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ABSTRACT  

Rainforests are continuously threatened by various anthropogenic 
activities. In addition, the ever-changing climate severely impacts the 
world’s rainforest cover. The consequences of these are paid back to 
human at a higher cost. Nevertheless, little or no significant attention 
was broadly given to this critical environmental issue. The World 
Heritage Sinharaja Rainforest in Sri Lanka is originating news on its 
forest cover due to human activities and changing climates. The 
scientific analysis is yet to be presented on the related issues. Therefore, 
this paper presents a comprehensive study on the possible impact on 
the Sinharaja Rainforest due to changing climate. Landsat images with 
measured rainfall data for 30 years were assessed and the relationships 
are presented. Results showcased that the built-up areas have 
drastically been increased over the last decade in the vicinity and the 
declared forest area. The authorities found the issues are serious and a 
sensitive task to negotiate in conserving the forest. The rainfall around 
the forest area has not shown significant trends over the years. 
Therefore, the health of forest cover was not severely impacted. 
Nevertheless, six cleared-up areas were found inside the Singaraja 
Rainforest under no human interactions. This can be due to a possible 
influence from the changing climate. This was justified by the temporal 
variation of Land Surface Temperature (LST) assessments over these six 
cleared-up areas. Therefore, the World Heritage rainforest is threatened 
due to human activities and under the changing climate change. Hence, 
the conservation of the Sinharaja Rainforest would be challenging in the 
future.  
 
KEYWORDS 
Climate change and variability; forest cover; Landsat; rainfall; Land 
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1. INTRODUCTION 

World forest cover has been drastically reduced over time. This could be due to 
natural reasons like landslides, avalanches, snow breakages, wind throws, fires and 
insect outbreaks (Bebi et al., 2017). However, the natural causes can be considered 
minor factors for deforestation compared to human activities over time. Population 
increase has continuously increased the rate of urbanization (Leach & Fairhead, 2000; 
Wang et al., 2020) and the forest areas are being threatened. In addition, forest areas 
are continuously deforested to satisfy the rising food demand of the people (Gibbs et 
al., 2010). Therefore, agriculture is a major factor in the decreasing forest cover, and 
there are enough examples from the past (Birhane et al., 2019; Heartsill-Scalley & Aide, 
2003; Temudo & Silva, 2012; Zhu & Waller, 2003).  

The agriculture and development projects, like construction of new reservoirs 
(Benchimol & Peres, 2015; Chen et al., 2019), expressways (Ji et al., 2014), etc. have 
reduced the forest cover significantly. The forest cover in Sri Lanka is following the 
same trends, which can be seen for the world with agriculture and development 
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projects (Ranagalage et al., 2020; Rathnayake et al., 2020). Lindström et al. (2012) have 
investigated the forest cover change in Sri Lanka for two conserved natural forests 
(naming Kanneliya forest reserve and Knuckles conservation forest) due to the small 
farming activities. Results revealed a significant forest cover decrease in the Kanneliya 
forest reserve, whereas a considerable increase in the Knuckles conservation forest 
(due to the imposed rules and regulations). In general, Ranagalge et al. (2020) have 
found a significant decrease in the forest cover in Sri Lanka over the years and that 
could well be due to human activities. Nevertheless, very little research work has been 
carried out in the context of Sri Lanka to identify the localized forest cover change.  

Climate change and forest cover reduction are two interconnected activities. 
When there is an ongoing climate change, the forest cover is naturally impacted and 
vice versa. The land-use and land cover changes (LULCC) cause a significant impact on 
regional climates over regional and global scales (Sy & Quesada, 2020). Thus, the 
LULCC impacts lead to change the ecosystems and then, to change the global climates. 
Margono et al. (2014) stated that greenhouse gas emissions were observed due to 
clearing the primary forest areas in Indonesia. In addition, significant biodiversity loss 
was observed in the process. For 12 years (2000 to 2012), they have quantified a loss of 
6.02 Mha, higher than that of Brazil.  

Choi et al. (2011) have showcased a prediction model to identify the forest cover 
changes in South Korea. They have used the hydrological and thermal indices in their 
prediction model. In addition, a prediction model based on the climate scenarios for 
Europe was developed by Härkönen et al. (2019). The relationship between climate 
change and forest cover change has well been addressed in many areas in the world. 
However, no or very limited research has been carried out along the lines of climate 
change and forest cover (as per the authors’ knowledge) in the context of Sri Lanka.  

Analyzing the temporal variation of the forest cover has been a demanded topic 
in the research world. Many researchers have used time-dependent satellite images to 
analyze forest cover change. Landsat satellite imageries from 1990 to 2000 were used 
to analyze the forest cover change in one of the most forested countries in Southeast 
Asia, Myanmar by Leimgruber et al. (2005). Their analysis showcased the importance of 
the forest cover on biodiversity and found a rate of 0.3% annual forest cover declination. 
Similar analysis can be found in the literature for many other countries and areas 
(Huang et al., 2009; Kim et al., 2011; Stibig & Malingreau, 2003). These Landsat satellite 
images can sometimes be incomplete for various reasons, including the climate effects, 
satellite resolutions, and cloud cover. Khan et al. (2017) have incorporated a deep 
neural network to overcome some of the issues in incomplete satellite images for forest 
cover detection. A similar technique was used in much other research work to overcome 
some of the issues in satellite images and enhance the quality of the research work 
(Kislov et al., 2021; Sylvain et al., 2019). The forest covers in some of the areas of Sri 
Lanka were assessed by several researchers (Lindström et al., 2012; Perera & Tsuchiya, 
2009; Rathnayake et al., 2020). However, none showcased a depth and detailed analysis 
of the World Heritage Rainforest, Sinharaja.  

Sinharaja Rainforest is a World Heritage site in Sri Lanka and faced many 
anthropogenic activities over the recent past and threatened its forest cover and its 
biodiversity. Many development activities in the circumference of the Sinharaja 
Rainforest have happened in the recent past and local and international 
environmentalists have strongly showcased the importance of protecting this World 
Heritage. However, there are many drawbacks to the conservation of World Heritage.On 
the other hand, no research can be found to showcase the temporal variation of the 
forest cover over the years in the Sinharaja Rainforest due to anthropogenic activities 
and to change climate. Therefore, the research world has no scientific information on 
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the forest cover in Sinharaja Rainforest. To overcome the showcased research gap, this 
research presents novel research work on this World Heritage Sinharaja Rainforest 
cover to analyze the temporal variation of the forest cover and its relationships to the 
surface temperatures. Promising results are found from this study, and these results 
can effectively be used in a comprehensive conservation program of Sinharaja 
Rainforest, Sri Lanka. 

2. STUDY AREA 

Sinharaja Rainforest Reserve is located in southwest Sri Lanka and is considered 
the last extensive patch of primary lowland tropical rainforest in Sri Lanka, covering 
approximately an area of 8,864 ha. The forest can be seen at an altitude of 300 m – 
1,170 m. The reserve consists of 6,092 ha of forest coverage. In addition, another 2,772 
ha are proposed for the reserve. The forest reserve is within the latitude of 60 21’ and 
60 26’ North and longitude of 800 21’ and 800 34’ East (refer Figure 1); therefore, it 
bounds to Rathnapura, Galle, and Matara districts of Sri Lanka.  

 
Figure 1. Study area with rainfall gauges and observed damaged sites 

The area was first declared as a forest reserve in 1875. At that time, the Sinharaja 
Rainforest reserve had an area of about 23,000 ha (Baker, 1937), The area was reduced 
to 8,864 ha with some human settlements inside the declared forest area. Extensive 
logging was continued until 1978. This has caused severe damage to the ecosystem of 
the Sinharaja Rainforest. The National Heritage Wilderness Act presented in 1988 
helped to ban the logging and replantation of logged areas.  

The forest covers two important geological zones including the South-western 
and Highland groups. In addition, the mean annual rainfall to the forest area is around 
3750 mm to 5000 mm. The rainy season activates in the south-western and north-
eastern monsoon times. A total of 139 (64%) out of 217 trees and woody climbers, 
which are endemic species in the lowland of Sri Lanka, and can be found in the 
Sinharaja Rainforest (Examples: Humboldtia Iaurufolia, Elaeocarpus Coriaceus, Uncria 
Thwatesii, Litcea Longifolia, etc.). In addition, 19 out of 20 endemic Sri Lankan birds 
can be found in reserve (Examples: Green – Billed Coucal, Small Miniver, Yellow-Broed 
Bulbul, The Sri Lanka Blue Magpie, etc.). Endemic butterflies count is more than 50% 



 
 

Forest and Society Vol. 6(1): 355-377  358 

Samarasinghe et al. (2022) 

inside the reserve. Furthermore, threatened mammals like black leopards and Indian 
elephants can also be seen in the forest. Therefore, the forest reserve was named as a 
UNESCO World Heritage site in 1987 (Gunathilake et al., 1987). Nevertheless, the forest 
reserve is under serious threat due to the population increase, new settlements, 
infrastructure development, cultivations, etc. Therefore, there are many critical reviews 
(especially in the local newspaper in Sri Lanka) on the moving boundaries of the 
Sinharaja rainforest reserve. 

3. MATERIALS AND METHODS 

3.1. Climatic and remote sensing data 

The Forest boundary for the Sinharaja rainforest according to the 2012 
publication was obtained from United Nations Educational, Scientific and Cultural 
Organization (UNESCO) (https://en.unesco.org/). The required climatic data were 
purchased from the Department of Meteorology, Sri Lanka. The monthly cumulative 
rainfall data for the rainfall stations around the Sinharaja Rainforest were obtained for 
30 years (from 1989 to 2019) for Kudawa, Deniyaya, Pallegamathanna, Pelawatta, and 
Depedena rainfall stations. In addition, monthly rainfall data for 3 years (from 2016 – 
2019) from newly established rainfall stations, including Batuwangala, Breverly Estate, 
Sooriyakanda, Kalawana, and Ulinduwawa were purchased. The spatial distribution of 
the rainfall stations around the Sinharaja rainforest can be seen in Figure 1.  

Furthermore, the daily minimum and maximum atmospheric temperatures and 
morning and evening relative humidities of Deniyaya for some of the selected months 
(March 1992, April 1995, February 1997, February 2005, February 2016, and February 
2019) were purchased from the Department of Meteorology, Sri Lanka. In addition, 
measured land surface temperature data (5 cm below the surface) for Matara for some 
of the selected dates were obtained from the Department of Agriculture, University of 
Ruhuna, Sri Lanka. Moreover, the satellite images for image processing were obtained 
from USGS Earth Explorer at https://earthexplorer.usgs.gov/ for Landsat 5 Thematic 
Mapper (for the years 1992 – 2005), Landsat 8 Operational Land Imager (for the years 
2016 – 2019), and Google Earth Pro (for the years 2001 – 2019). 

3.2. Landsat image extraction and forest cover detection 

Opensource Land observatory missions (i.e., Landsat, Sentinel 2) provide the 
finest resolution of satellite images ranging from 15-30 m (to maintain homogeneity, 
Landsat images were used for this study) (Fokeng et al., 2020). All these Landsat images 
are in the raster format. Usually, the commercial satellite missions provide high-
resolution images of earth up to 15 cm finest resolution (Jin & Davis, 2007; Zhang et al., 
2020). The, 30 m resolution images are widely used and accepted for many applications 
than high-resolution satellite images (Anderson et al., 2012; Matricardi et al., 2010; van 
Leeuwen et al., 2011). However, the thermal bands of Landsat images are much coarser 
than reflective bands. 

For this study, the remote-sensed Landsat satellite images from 1992 to 2019 
were extracted from Landsat 5 TM and Landsat 8 OLI. The Thematic Mapper (TM) 
thermal band pixel is about 120 mX120 m in resolution while Operational Land Imager 
(OLI) thermal band pixel is about 100 mX100 m, respectively. Even though the pixel size 
is coarser, the land surface temperatures obtained from them are usually acceptable.  

Careful consideration was given in selecting the satellite images. Cloud-free or 
minimum cloud levels (<10%) were extracted for the drier periods.  

The images selected during the wet period usually give a large forest cover due to 
high reflectance in red and near-infrared bands (Fokeng et al., 2020). The satellite 
images extracted during the wet season were checked and found out that they are 
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usually with a higher percentage of clouds. This can cause higher reflectance (Sun et 
al., 2018). Therefore, the images recorded only during the dry period were considered 
for this study. Table 1 presents a summary of the satellite images extracted for this 
study. 

Table 1. Extracted remote sensing data and ground measurements 

 
The land-use class of the study area was classified with field observations and 

high-resolution satellite images from Google Earth. The entire classification was 
conducted for six land-use classes: forests, cultivations, build-ups, water bodies, bare 
lands, and clouds. The land-use pattern in the defined forest area can be classified with 
an open-source semi-automated classification plugin in QGIS 3.10 (QGIS is a leading 
open-source Geographic Information System application), while a supervised 
classification (using a semi-automated classification tool) was carried out in this study 
area by training areas and pixel-based image classification. The defined pixels identify 
the materials in an image according to the material’s signatures. Therefore, the land-
uses can be identified based on this classification. The semi-automated classification 
tool was successfully used for this identification. More information on this open-source 
toolbox can be found in Congedo (2016). In addition, the accuracy assessment of these 
classifications was conducted with high-resolution images of Google Earth.  

The loss or the gain by targeted land-use classes can be calculated by the 
suggestions from Hansen et al. (2013). In addition, the rate of change of land-uses can 
be calculated by Equation 1 (Fokeng et al., 2020). 

𝐴𝑛𝑛𝑢𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒 𝑅𝑎𝑡𝑒 (ℎ𝑎/𝑦𝑒𝑎𝑟) =
∆𝐴

𝑁
× 100 

(1) 

 
where ∆A is the change of area in the targeted land-use class (measured in ha), N is the 
number of years between the beginning and the end of the study period. 

3.3. Land surface temperature (LST) retrieval 

Six sites (LC01 – LC06) were selected after carefully observing the forest cover 
over the years. The high-resolution satellite images were used in these selections and 
the selected sites are given in Figure 2. Importantly, these sites have deforested or 
deteriorated forest cover without traceable human interference. There was no clue of 
gaining the forest back; however, the widening of the deforested area can be observed.  

Many researchers suggested several reasons, including increment of surface 
temperature, implementation of various toxic levels, mortality, etc. were suggested by 
many researchers for such deforestation inside a forest (Karnieli et al., 2010; Peterson, 
2000; Walthert et al., 2013). However, due to the nature of the Sinharaja Rainforest, the 
increment of surface temperature can be seen as one of the acceptable reasons for such 
deforestation. 

Sensor 
Extraction 

for the date 
of 

Spatial Thermal Band 
Resolution (m) 

Thermal IR / T1RS 1 

T0 (0C) for 
Deniyaya 

Relative Humidity 
(RH) (%) for Deniyaya 

Landsat 5 TM 

13/03/1992 120 25.6 62 
07/04/1995 120 27.7 70 
23/02/1997 120 27.1 78 
13/02/2005 120 25.1 60 

Landsat 8 OLI 
28/02/2016 100 25.6 62 
20/02/2019 100 27.7 70 

Landsat 5 Thermal Band – Band 6 
Landsat 8 Thermal Band – Band 10 
Spatial resolution (m) Red, Green, Blue – 30 m 
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Figure 2. Deforested or deteriorated forest cover sites 

Extracted Landsat satellite images were used to estimate the LST of the whole 
area of the Sinharaja rainforest. These images were segmented in the open-sourced 
QGIS (https://qgis.org/en/site/) environments using Python programming language. 
Several methods, including Mono Window Algorithm (MWA) (Athick et al., 2019; Qin et 
al., 2001), Single Channel Algorithm (SCA) (Chatterjee et al., 2017; Cristóbal et al., 
2018; Wang et al., 2016), Radiative Transfer Equation (RTE) (Dash et al., 2001; Yu et al., 
2014), and Spilt Window Algorithm (SWA) (Labbi & Mokhnache, 2015; Rongali et al., 
2018), can be found in the literature to estimate the LST from the Satellite images.The 
accuracy of these methods may differ from one to another (García-Santos et al., 2018). 
Nevertheless, according to the suggestions from Sekertekin & Bonafoni (2020), MWA 
was used to calculate the land surface temperature in the Sinharaja rainforest. The 
governing equations for the LST estimation are given in Equations 2-14. 
• LST calculations (𝑇𝑠) (Qin et al., 2001) 

𝑇𝑠 = {𝑎. (1 − 𝐶 − 𝐷) + [𝑏. (1 − 𝐶 − 𝐷) + 𝐶 + 𝐷]. 𝑇 − 𝐷𝑇𝑎} ÷ 𝐶 
 

(2) 

where 𝑎 = −67.355351 and 𝑏 = 0.458606  
𝐶 = 𝜀 × 𝜏 

 
(3) 

𝐷 = (1 − 𝜏)[1 + (1 − 𝜀) × 𝜏] (4) 
 
• Effective mean atmospheric temperature calculations (Ta) (Qin et al., 2001) 

𝑇𝑎 = 17.977 + 0.9172 × 𝑇0   (Tropical Region) (5) 
 
where T0 is the near surface air temperature (measured in Kelvin). 

 
• Transmittance calculations (𝜏6 and 𝜏10) 

𝜏6 = 1.053710 − 0.14142𝑤     - For Landsat 5 (TM) (6) 
 

 
 
 

https://qgis.org/en/site/
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• The Equation 6 is valid only for the regions with temperatures between 20-30 0C 
with a water vapour content (𝑤) between 1.6 – 3.0 (Sekertekin & Bonafoni, 2020). 

 
𝜏10 = −0.0164𝑤2 − 0.04203𝑤 + 0.9715     - For Landsat 8 (OLI) (7) 

 
where w is the water vapour content (g/cm2).  
 
• Water vapour content calculations (𝑤𝑖) 

𝑤𝑖 = 0.0981 {10 × 0.6108 𝑒𝑥𝑝 [
17.27 × (𝑇0 − 273.15)

237.3 + (𝑇0 − 273.15)
] × 𝑅𝐻}

+ 0.1697 

(8) 

 
• Emissivity calculations (𝜀) (Sobrino et al., 2008) 

𝜀 = {
0.979 − 0.035𝜌𝑅

0.004𝑃𝑣 + 0.986
0.99

         
𝑁𝐷𝑉𝐼 < 0.2

0.2 ≤ 𝑁𝐷𝑉𝐼 ≤ 0.5
 𝑁𝐷𝑉𝐼 ≥ 0.5

 
(9) 

 
• Normalized Difference Vegetation Index (𝑁𝐷𝑉𝐼) calculations (Viana et al., 2019) 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅

𝜌𝑁𝐼𝑅+𝜌𝑅
 (10) 

 
where 𝜌𝑁𝐼𝑅 is the reflectance band in the NIR region and 𝜌𝑅  is the reflectance band in 
the Red region. 

 
• Fractional vegetation cover (𝑃𝑣) (Song et al., 2017) 

𝑃𝑣 = [
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑀𝐼𝑁

𝑁𝐷𝑉𝐼𝑀𝐴𝑋 − 𝑁𝐷𝑉𝐼𝑀𝐼𝑁
]

2

 
(11) 

 
• Radiance (𝐿𝜆) calculations (Sekertekin & Bonafoni, 2020) 

Landsat 5 TM 

𝐿𝜆 = [
𝐿𝑀𝐴𝑋,𝜆 − 𝐿𝑀𝐼𝑁,𝜆

𝑄𝐶𝐴𝐿,𝑀𝐴𝑋 − 𝑄𝐶𝐴𝐿,𝑀𝐴𝑋
] + [𝑄𝐶𝐴𝐿 −  𝑄𝐶𝐴𝐿,𝑀𝐼𝑁] + 𝐿𝑀𝐼𝑁,𝜆 

 

(12) 

Landsat 8 OLI 
𝐿𝜆 = 𝑀𝐿𝑄𝐶𝐴𝐿 + 𝐴𝐿 

(13) 

 
where 𝑄𝐶𝐴𝐿 is the quantized calibrated pixel value in Digital Number (DN), 𝐿𝑀𝐼𝑁,𝜆 
(Watts/(m2.srad.μm)) is the spectral radiance scaled to 𝑄𝐶𝐴𝐿,𝑀𝐼𝑁, 
𝐿𝑀𝐴𝑋,𝜆 (Watts/(m2.srad.μm)) is the spectral radiance scaled to 𝑄𝐶𝐴𝐿,𝑀𝐴𝑋, 𝑄𝐶𝐴𝐿,𝑀𝐼𝑁 is the 
minimum quantized calibrated pixel value in DN, 𝑄𝐶𝐴𝐿,𝑀𝐴𝑋 is the maximum quantized 
calibrated pixel value in DN, 𝑀𝐿  is the band-specific multiplicative rescaling factor, and 
𝐴𝐿 is the band-specific additive rescaling factor. These values can be obtained from the 
meta-data file of the Landsat image. 

 
• Brightness Temperature (T) calculations (Mujabar & Rao, 2018) 

𝑇 =
𝐾2

ln (
𝐾1
𝐿𝜆

+ 1)
 

(14) 

 
where K1 is 607.76 𝑊/𝑚2. 𝑠𝑟𝑎𝑑. 𝜇𝑚 and K2 is 1260.56 𝐾 for Landsat 5 and K1 is 
774.89 𝑊/𝑚2. 𝑠𝑟𝑎𝑑. 𝜇𝑚 and K2 is 1321.08 𝐾 for Landsat 8, respectively. The ground 
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temperature measurements are rare in Sri Lanka. Therefore, such data are scarce. 
However, the closest real-world ground temperature measurement facility is the 
Faculty of Agriculture, University of Ruhuna, Sri Lanka, which is around 50 km away 
was used to validate the estimations. 

3.4. Rainfall trend analysis 

Rainfall trend analysis were carried out to identify the rainfall trends using the 
historical rainfall data around the Singharaja forest. The rain gauges used for this study 
are given in Figure 1. They are well spread around the forest. Thus, it was assumed that 
the rain gauges around the forest represent the rainfall patterns in the vicinity of the 
forest. The results of the trends were used to represent any potential impacts to the 
forest cover. 

Purchased monthly rainfall data were used to analyze the rainfall trends. The 
missing data were filled by the inverse distance method as it is one of the better-suited 
methods to fill the missing data in the regions of the lower elevated areas (Sirisena & 
Suriyagoda, 2018), than the other methods (De Silva et al., 2007). Then, the Pettitt’s 
test, SNHT, Buishand’s test, and von Neumann’s test were carried out to check the 
homogeneity of the rainfall data series (Haylock et al., 2008; Sahin & Cigizoglu, 2010). 
Finally, the Mann-Kendall test and Sen’s slope estimator tests were carried out to 
identify any possible rainfall trends.  

The Mann–Kendell test is a widely used nonparametric test by many researchers 
to check the climatic trends (Hirsch & Slack, 1984; Karmeshu, 2012; Khaniya et al., 
2019; Mann, 1945; Rathnayake, 2019). Both increasing trends and decreasing trends 
can be estimated using the Mann–Kendall test by following Equation 15. 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

 
(15) where 

𝑠𝑔𝑛(𝑥𝑖 − 𝑥𝑗) = {

1 𝑖𝑓 𝑥𝑗 − 𝑥𝑖 > 0

0 𝑖𝑓 𝑥𝑗 − 𝑥𝑖 = 0

−1 𝑖𝑓 𝑥𝑗 − 𝑥𝑖 < 0

 

 
where 𝑥𝑗 and 𝑥𝑖 are climate data value in months/years 𝑗 and 𝑖 here 𝑗 > 𝑖. The Mann-
Kendall’s statistic S is calculated by the Equation 15. The “sgn” sign function is given in 
the latter part of the equation. However, the Mann–Kendall test is a qualitative 
measurement of the trend. Therefore, in order to quantify the trends, Sen’s slope 
method (Sen, 1968) was coupled to the Mann-Kendall method. Sen’s slope is used to 
calculate the magnitude of the trend at a given time using the gradient of the trend. The 
test is widely used in assessing the magnitude of the rainfall trends over time. The 
mathematical explanation of Sen’s slope (𝑄𝑖) method is given in Equation 16. 

 

𝑄𝑖 =
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
 𝑓𝑜𝑟 𝑖 = 1, … … . . , 𝑁, 

 

(16) 

where 

𝑄𝑖 = {

𝑄𝑁+1
2

              𝑖𝑓 𝑁 𝑖𝑠 𝑜𝑑𝑑

𝑄𝑁
2

+ 𝑄𝑁+2
2

2
    𝑖𝑓 𝑁 𝑖𝑠 𝑒𝑣𝑒𝑛
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The median of the 𝑁 values of 𝑄𝑁 is symbolized as the Sen’s slope estimator (𝑄𝑖) and 
given in the latter part of the Equation 16. Depending on the sign of the 𝑄𝑖, the trend 
can be identified as an increasing (+ve numerical value) or decreasing (-ve numerical 
value) trend. 

3.5. Comparison of LST and mean precipitations to NDVI values 

After calculating the LST and distribution of precipitation over the forest, NDVI 
based relationships were established to combine the meteorological factors with forest 
cover area (Mao et al., 2012; Sandholt et al., 2002; Wan Mohd Jaafar et al., 2000). NDVI 
is a reflectance of Near Infra-Red (NIR) by plants due to photosynthesis (other rays are 
absorbed). Therefore, the influence of meteorological factors on vegetation can be 
further analyzed. The comparison studies were carried out for Land surface 
temperature against the NDVI and mean precipitations against the NDVI. 

4. RESULTS AND DISCUSSION 

4.1 Forest cover variation 

The identified six land-uses and land cover classes from multiband satellite 
images are processed using semi-automated classification tool and presented in Figure 
3 for 1992, 1997, 2005, 2016, and 2019. The differences in forest area are insignificant 
from these figures. However, there is a clear increase in the built-up land areas in the 
satellite images from 2005 to 2019, clearly shown in red color. This is interesting as 
they are at the boundaries of the Sinharaja Rainforest. 

(a) For 1992 
 

(b) For 1997 

 
(c) For 2005 

 
(d) For 2016 
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(e) For 2019 

Figure 3. Land-use pattern in declared forest area 

Table 2 presents the numerical analysis of the land-uses presented in Figure 3. 
The table reveals that the temporal variation of areas in different land-uses is dynamic 
over the analyzed period. 

Table 2. Land use classes in the declared forest area 
Land-use 

Class 

Area (ha) Difference in area 
Year 
1992 

Year 
1997 

Year 
2005 

Year 
2016 

Year 
2019 ∆𝟏 ∆𝟐 ∆𝟑 ∆𝟒 

Forest cover 9015.21 9067.05 9212.76 9238.59 9167.04 -51.84 -145.71 -25.83 71.55 
Cultivations 413.73 403.11 213.75 218.52 203.31 10.62 189.36 -4.77 15.21 
Built-up 
areas 

14.85 22.77 131.31 112.77 188.64 -7.92 -108.54 18.54 -
75.87 

Bare Land 
area 

69.48 21.24 4.95 5.4 1.53 48.24 16.29 -0.45 3.87 

∆1= ∆(1992 − 1997), ∆2= ∆(1997 − 2005), ∆3= ∆(2005 − 2016), ∆4= ∆(2016 − 2019) 
Sign convention  
(-)  for Gain of area compared to previous year checked 
(+) for Loss of area compared to previous year checked 

 
Interestingly, Table 2 reveals that the forest area over the years has been 

increased until 2016. However, there is a notable decrease in 2019 (71.55 ha). 
Nevertheless, there was a significant increase in forest cover from 1992 to 2019. Bare 
lands and cultivation lands showcase a similar trend over the years. A continuous 
decrease (slight exception from 2005 to 2016) in the land areas can be clearly seen from 
the table. The cultivated areas basically include tea, rubber plantations, and paddy 
fields. In-depth, cultivated areas inside the declared forest areas were reduced from 
1992 – 2005. But, a heavy reduction in can be observed during 1997 – 2005.From 2005 
– 2016 there was a slight increase in cultivated areas, although that was further 
reduced in the 2016 – 2019 period. As it was stated earlier, a similar trend was observed 
in the bare lands in the declared forest area. However, this was reduced entirely over 
time. The possible reason for reducing cultivated areas and bare lands may be due to 
the increase of built-up areas.  

 
(a) Land-use class variation 

 
(b) Annual change rate in each land 

cover/use 
Figure 4. Land-use class variation and rate of change in declared forest area 
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The built-up areas in the declared forest have been increased significantly. It was 
14.85 ha in 1992; however, a steep increase to 188.64 ha has been observed. This is 
above 1000% of the increase over the last 28 years. The built-up areas are based on 
residential or commercial and tourism interest; however, a severe and continuous 
threat to the world heritage Sinharaja Rainforest. The continuous anthropogenic 
activities would further threaten the forest and bare land cover. The changes and the 
rate of change of land-uses can be further observed in Figure 4. This clearly shows the 
overtaking of the bare land areas to the built-up areas. 

4.2 NDVI for Sinharaja forest 

The previous section summarizes an increase in forest cover from 1992 to 2016, 
and it was then suddenly decreased from 2016 to 2019. Therefore, it is interesting to 
understand the influence of climate change on these forest cover changes. Thus, the 
NDVI was calculated for each year. Figure 5 presents the distribution of NDVI for the 
years 1992, 1995, 1997, 2005, 2016, and 2019. The darker the colour (green), the forest 
is denser. 

 
(a) For 1992 

 
(b) For 1995 

 
(c) For 1997 

 
(d) For 2005 

 
(e) For 2016 

 
(f) For 2019 

Figure 5. NDVI distribution over the time 



 
 

Forest and Society Vol. 6(1): 355-377  366 

Samarasinghe et al. (2022) 

Figures 5a-5f show some interesting variations in colour even though these 
Landsat images were captured on average at the same time of the year (February-
March-April). Therefore, the usual climate patterns can be expected to constrain all of 
these NDVI values. The years 1992, 1995, and 2019 showcase some thick or healthier 
forest cover across the Sinharaja Rainforest. However, the years 1992 and 2005 have 
low denser forest cover, and this could be due to some dry weather conditions in the 
area. This observation can be further discussed based on the numerical basis of the 
NDVIs, which are given in Table 3. It shows the NDVI values ranging from 0 – 0.9 and 
the forest area coverage (in hectares). NDVI values greater than 0.5 are usually 
considered healthy forest covers. 

Table 3. NDVI values and area of forest 

NDVI Value 
Area in (ha) 

1992 1995 1997 2005 2016 2019 
0.1-0.2 1.53 0 0.27 3.51 0 0.72 
0.2-0.3 18.45 0.63 9.90 9.45 0.18 2.88 
0.3-0.4 39.42 7.38 18.63 22.68 4.41 6.57 
0.4-0.5 146.88 24.57 30.51 298.53 19.98 9.54 
0.5-0.6 1298.70 117.90 81.45 4974.21 251.91 27.00 
0.6-0.7 7721.82 794.34 385.29 4266.36 5366.88 883.98 
0.7-0.8 353.34 7953.39 7745.49 5.40 3932.91 8584.38 
0.8-0.9 0 681.93 1308.60 0 3.87 65.07 

 
Compared to the year 1992, NDVI values of the year 1995 for Sinharaja Rainforest 

were significantly changed. The NDVI range was increased from 0.6 – 0.7 to 0.7 – 0.8 
(353.34 to 7953.39 ha). The increase of NDVI means the forest cover becomes healthier, 
greener, and mature (which can be seen in Figure 5b). Furthermore, it is observed that 
the forest area with 0.8 – 0.9 (Denser and Mature) range improved by approximately 
twice of 1995 in 1997. However, in 2005 most of the areas with higher NDVI values in 
1997 were reduced. But, in the 2016 – 2019 period compared to 2005, the NDVI ranges 
again improved.  

As it is well understood, there can be some unauthorized cultivated areas inside 
the Sinharaja Rainforest. This can be validated by in-depth field surveys. 

4.3 LST variation 

LST variation over time was obtained using the remotely sensed LST retrieved 
from the Land satellite images. However, before any further analysis, the remotely 
sensed LSTs, based on the empirical formulas, were validated based on the measured 
LST at the Faculty of Agriculture, University of Ruhuna, Sri Lanka. The comparison 
showed an acceptable agreement (R2 = 0.92) between the empirically calculated LST 
and measured LST, even though some fluctuations could be observed in cloud-covered 
areas. Figure 6 shows the comparison of measured and empirically calculated LST. On 
average the empirically calculated LSTs were numerically higher than the measured 
LSTs. However, there are two outliers, where the difference between the measured and 
empirical LSTs is 7.15 0C and this was on 07/04/1995. In addition, another outlier can 
be seen on 28/02/2016, which is about 2.78 0C indifference. 

With these acceptable validations, the LST values from satellite images were 
further used to compare.  The six sites shown in Figure 2 were carefully identified as the 
deforested area without human influence, and the authors believed these have 
happened solely due to environmental impacts. The LST analysis was initially carried 
out to these six sites and then, to the entire forest area. An increasing trend in LST was 
observed with some fluctuations for the six selected sites presented in Figures. 7 and 8. 
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Figure 6. Measured LST against empirical LST 

Table 4. LST and NDVI variation of deforested areas 

Year 
LST (0c) NDVI 

LC1 LC2 LC3 LC4 LC5 LC6 LC1 LC2 LC3 LC4 LC5 LC6 
1992 30.3 28.3 28.3 27.6 26.4 26.0 0.59 0.63 0.65 0.54 0.62 0.37 
1995 19.2 18.2 18.3 18.6 17.7 16.5 0.78 0.51 0.80 0.62 0.73 0.53 
1997 22.4 21.0 25.2 24.2 23.5 23.0 0.61 0.69 0.66 0.67 0.73 0.60 
2005 27.0 26.3 25.4 26.7 27.3 23.9 0.55 0.58 0.64 0.55 0.56 0.46 
2016 23.4 22.7 22.8 22.3 19.9 20.9 0.73 0.72 0.75 0.65 0.49 0.54 
2019 25.3 26.5 26.9 27.0 26.6 24.7 0.76 0.57 0.74 0.65 0.61 0.60 

 

 
Figure 7. LST Change rates at six locations 

All LSTs in 1992 showcased high values; then, reduced in 1996. The sites LC1, 
LC2, and LC3 are close to each other (can be seen from Figure 2). Therefore, LC1 and 
LC2 sites showed similar behaviour of LST variations and change rates. Based on the 
LSTs shown in Table 4, it can be clearly seen that the year 1995 is a slightly cooler year 
compared to others. The LST change rates are comparably high from 1992 to 1995 
(negative) and from 1995 to 1997 (positive). However, these LST rates are milder for the 
other year intervals. These are clearly observed from Figure 7. However, there was a 
notable rate of increase in LST for LC5 during 2016 -2019. Therefore, combining all 
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these observations, the authors would happy to propose a milder upward LST trend in 
the Sinharaja rainforest. Nevertheless, more research has to be carried out 
continuously for sound conclusions. In addition, the NDVI values for these six locations 
over the years can be seen from the Table 7. The values do not showcase drastic changes 
but slight temporal changes can be observed. 

Figure 8 presents LSTs' temporal and spatial variation for the entire forest area. 
Figure 8a showcases the LST variation to 1992. It can be clearly seen that the LSTs are 
comparably higher than in other years. LSTs above 35 0C are shown in red patches. 
These patches are visible in the forest's northern and south-eastern boundary not 
shown in significant areas. The average LST is in the range of 25-30 0C. However, 
interesting features in LST can be found in the year 1995. The land surface of the whole 
forest area has cooler temperatures and the range is in between 10-15 0C. 
Nevertheless, the LSTs were increased and reached 25-30 0C except in 2016. 

 
(a) For 1992 

 
(b) For 1995 

 
(c) For 1997 

 
(d) For 2005 

 
(e) For 2016 

 
(f) For 2019 

Figure 8. LST variation at Sinharaja Rainforest 
 



 
 

Forest and Society Vol. 6(1): 355-377  369 

Samarasinghe et al. (2022) 

4.4 Rainfall trend analysis and spatial distribution of rainfall 

Possible rainfall trends to the measured rainfall were carried out using Mann-
Kendall and Sen’s slope estimator tests for the Kudawa, Deniyaya, Pallegamathanna, 
Pelawatta, and Depedena rainfall stations. None of the stations showcase a positive or 
negative rainfall trend over the last 30 years. Deniyaya showed a negative rainfall trend; 
however, it can be considered an insignificant trend due to the magnitude of the trend 
(-0.00614 mm/year). The temporal and spatial variations for the rainfall inside the 
Sinharaja Rainforest cannot be identified from the measured rainfalls.  

The spatial distribution of rainfall is important for further study on forest cover. 
Therefore, the inverse distance weight interpolation method was used to identify the 
distribution of precipitation in the forest area. The satellite images were used in these 
findings; however, the accumulated rainfall from the previous year was considered. 
Figure 9 showcases rainfall's spatial and temporal variation inside the Sinharaja 
Rainforest area. 

 
(a) For 1991-1992 

 
(b) 1994-1995 

 
(c) For 1996-1997 

 
(d) For 2004-2005 

 
(e) For 2015-2016 

 
(f) For 2018-2019 

Figure 9. Spatial and temporal distribution of rainfall 
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Mean precipitation distribution for the 1991 – 1992 year is quite low compared to 
the year 1994 – 1995 period. More annual rain may improve the growth of the 
vegetation. However, approximately a similar trend was observed in the 1996 – 1997 
period compared to 1991 -1992. During the 2004 – 2005 period the accumulated 
rainfall over the forest was increased and the entire forest received over 3000 mm 
rainfall. For the rest of the years, the spatial distribution of rainfall shows that most 
areas received more than 3000 mm of accumulated rainfall and some have received 
more than 3500 mm of rainfalls. Furthermore, above 4000 mm rainfalls can be seen in 
2018-2019. 

4.5 Relationship between NDVI and LST 

Sandholt et al. (2002) have shown that the NDVI and LST values have negative 
linear correlation (but insignificant) and the establishment of the dryline (expected 
trends in Figure 10, dashed lines). That approach was directly applied to understand the 
NDVI and LST correlation at Sinharaja Rainforest. Figure 10 shows the LST variation 
with respect to the NDVI variation and dry areas and wet areas are shown in the figure.  

Figure 8a shows a high LST distribution over the entire forest for the year 1992. 
This observation has entirely affected the NDVI distribution in the forest area. NDVI 
values for 1992 (red dots) are above the corresponding dryline (red dashed line) for 
NDVI values of 0.5-1 in Figure 10.  That means no or less transpiration took place during 
the year 1992 and thus, resulted in a moderately healthy forest cover.  

However, in 1995 – 1997 majority of the points of NDVI lie in the wet wedge. 
Therefore, transpiration evaporation and ecological processes work effectively and 
result in healthy and increased forest cover. But for the years 2005, 2016, and 2019 
most of the NDVI values representing the forest vegetation lie above the expected dry 
lines. Therefore, the increase of forest cover is considerably minimized. Further, it is 
observed an increase in LST from 2005 – 2019 at high NDVI locations, and that can 
adversely impact flora and fauna required lower temperatures. 

 
Figure 10. LST variation with respect to NDVI 
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4.6 Relationship between NDVI and precipitation 

Wan Mohd Jaafar et al. (2020) and Mao et al. (2012) have shown that NDVI and 
precipitation have a positive but significant linear correlation based on their findings. 
Figure 11 exhibits the relationship between precipitation and NDVI for Sinharaja 
Rainforest. A boundary line was established for the precipitation similar to the previous 
section (section, Relationship between NDVI and LST, dashed line) and plotted the 
mean precipitation with respect to NDVI (refer Figure 11).  

In general, no significant rainfall trends were observed in most of the highly 
vegetated areas (i.e., High in NDVI Value). The accumulated precipitation of years 1991-
1992 was reduced in highly vegetated areas. However, most of the forest places 
received high precipitation, which was the reason to have a high forest area with 
healthy vegetation. Nevertheless, in 2005, the precipitation lies below the boundary 
line at highly vegetated areas and becomes the reason for having a less healthy forest 
cover. However, the accumulated precipitation for 2015 – 2016 is almost parallel to the 
boundary line and that might be the reason for improving NDVI values of the forest 
compared to 2005. The 2019 event is a special as the accumulated rainfall reaches its 
highest compared to other years. Even though most of the NDVI regions received less 
precipitation compared to expect. But the magnitude might be the reason for the 
increase of the greenish colour of the forest and make it healthier. Therefore, the 
relationship between NDVI and precipitation is justified. 

 
Figure 11. Mean precipitation and NDVI variation 

5. CONCLUSION 

This paper presents a timely important discussion on the impact of climate change 
on the World Heritage Rainforest; Sinharaja in Sri Lanka. The discussion extended to 
the human activities in the vicinity and declared forest areas as built-up areas. Land-
use patterns, Land Surface Temperatures, Normalized Difference Vegetation Index, and 
rainfall trend analysis were combined to identify any potential climate change impacts 
to the Sinharaja Rainforest. The interaction of each parameter is tested. 

Land-use pattern analysis clearly presented the increase of built-in areas in the 
vicinity of the declared forest areas over time. Therefore, it can be concluded that a 
growing threat is there to the nation’s pride; Sinharaja Rainforest. This finding will 
benefit all stakeholders and then impose enough rules and regulations to control the 
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new built-up areas in the declared forest area. In addition, the rules and regulations 
should be brought up to manage the established built-up areas. 

Higher rainfalls in the western parts of the forest compared to the eastern parts 
can be observed from spatial distribution of the rainfall over the years. However, no 
rainfall trend was identified using the well-known non-parametric tests. Therefore, 
there is no critical concern about the rainfall received in the Sinharaja forest. In 
addition, the healthiness of the forest cover was well established from the LST to NDVI 
variation and the mean precipitation to NDVI variation. The spatial distribution of the 
LST concludes higher temperatures in the northern and southern boundaries of the 
forest. Many development activities can be seen over the years in the vicinity of the 
forest. Nevertheless, the LST to NDVI relationship justified the forest cover variation to 
the whole Sinharaja Rainforest. The variations concluded that the forest cover increase 
is minimal temporally compared to early years (1992 – 1997). Mean precipitation to 
NDVI variation concludes the decreasing rainfall trend in the high NDVI areas. 
Therefore, the forest cover is heading to dry in high precipitation areas. However, the 
forest area has regained the greenish color in the latter years. Therefore, the research 
clearly showcases the importance of such a study for the first time in Sri Lanka, which 
is the most important forest; Sinharaja Rainforest! 
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