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ABSTRACT  

Carbon dioxide (CO2) is one of the greenhouse gases that cause global 
warming, with the highest atmospheric concentration. Mangrove 
forests absorb CO2 three times higher than terrestrial forests and 
tropical rainforests. Moreover, mangrove forests can be a source of 
Indonesian income in the form of a blue economy. Therefore, an 
accurate method is needed to investigate mangrove carbon stock. The 
utilisation of remote sensing data with the results of the above-ground 
carbon (AGC) detection model of mangrove forests based on 
multispectral imaging and vegetation index can be a solution to obtain 
fast, cheap, and accurate information related to AGC estimation. This 
study aimed to investigate the best model for estimating the AGC of 
mangroves using Sentinel-2 imagery in Benoa Bay, Bali Province. The 
Random Forest (RF) method was used to classify the difference between 
mangrove and non-mangrove by treating several parameters. 
Furthermore, a semi-empirical approach was used to assess and map 
the AGC of mangroves. Allometric equations were used to calculate and 
produce AGC per species. Moreover, the model was built with linear 
regression equations for one variable x and multiple regression 
equations for more than one x variable. Root Mean Square Error (RMSE) 
was used to assess the validation of the model results. The results of the 
mangrove forests area detected in the research location around 
1,134.92 ha, with an Overall Accuracy (OA) of 0.984 and a kappa 
coefficient of 0.961. This study highlights that the best model was the 
combination of IRECI and TRVI vegetation indices (RMSE: 11.09 Mg/ha) 
for a model based on red edge bands. Meanwhile, the best results from 
the model that does not use the red edge band were the combination of 
TRVI and DVI vegetation indices (RMSE: 13.63 Mg/ha). The use of red 
edge and NIR bands is highly recommended in building the AGC model 
of mangrove forests because they can increase the accuracy value. 
Thus, the results of this study are highly recommended in estimating the 
AGC of mangrove forests because it has been proven to increase the 
accuracy value of previous studies using optical images. 
 
KEYWORDS 
Carbon stock; Mangrove forests; Sentinel image; Model; Vegetation 
indices; Coastal zone. 

1. INTRODUCTION 

Mangrove forests, as one of the main ecosystems in coastal areas, have many important 
roles, both from an ecological, biological and physical perspective. Ecologically, 
mangrove plays an important role in providing benefits and services related to carbon 
sequestration (Fourqurean et al., 2019; Sidik et al., 2019). Mangrove forests can store 
large amounts of carbon in vegetation (biomass) and other organic materials (Alongi, 
2012). 
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According to FAO (2007) data, the area of mangrove forests in Indonesia from 1980 
to 2005 decreased from 4.2 million ha to 2.9 million ha. The decline in mangrove areas 
was largely due to human activities such as converting mangrove forest areas into fish 
or shrimp ponds and urban development (Richards & Friess, 2016). The loss of mangrove 
forests accounts for 42% of Southeast Asia's global carbon dioxide (CO2) emissions 
from mangrove damage (Murdiyarso et al., 2015). 

Information on CO2 absorption from mangrove forests is essential in solving 
emissions or air pollution issues, particularly in urban areas. Determine the level of CO2 
emissions absorbed by mangrove forests can be done by estimating the total carbon 
stock contained in the mangrove biomass (Hastuti et al., 2017; Suardana et al., 2022). 
According to Heumann (2011), combining mangrove forest biomass estimation data 
with remote sensing data was the best and most practical method. This combination 
produced an allometric equation, forming the basis for an estimation model for 
mangrove forest carbon stocks (Wicaksono et al., 2011; Hirata et al., 2014; Patil et al., 
2015). 

Benoa Bay mangrove was one of the mangrove forests in strategic urban Bali areas. 
The study of above-ground carbon (AGC) estimation in mangrove forests using remote 
sensing with a vegetation index in Benoa Bay needs to better studied. Previous research 
proposed by Dewanti et al., (2020) applied a systematic sampling method but had a 
long-time constraint and high costs, while research from Mahasani et al. (2021) used 
ALOS PALSAR satellite imagery but had moderate accuracy results. Hence, this study 
aimed to develop an AGC estimation model for mangrove forests based on multispectral 
imaging and a vegetation index. We hypothesise that the development of combined 
multispectral imaging and a vegetation index with a semi-empirical approach is the best 
model for estimating mangrove AGC. 

2. MATERIALS AND METHODS 

2.1 Study Site 

The mangrove forest of Benoa Bay is geographically located in the south of Bali, divided 
into two regencies/cities, namely Denpasar City and Badung Regency (Figure 1). 
Mangrove forests grow across Benoa Bay in a strategic area of business growth centres 
and three main tourism areas: Nusa Dua, Sanur, and Kuta. 

 
Figure 1. Study site: (a) The geographical location of Bali Province in Indonesia, (b) The 
geographical location of Benoa Bay in Bali Province, (c) Coastal study sites in Benoa 
Bay with mangrove forests extracted from Sentinel-2 
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Based on the Decree of the Minister of Forestry Number: 544/Kpts-II/1993 dated 
September 25, 1993, the mangrove forest area reaches 1,373.5 ha and is the largest 
mangrove forest in Bali Province. Previous studies showed three dominant mangrove 
genera in the mangrove forest of Benoa Bay, namely Sonneratia sp., Rhizophora sp., 
and Bruguiera sp. (Mahasani et al., 2021). 

2.2 Methods 

Details of the Sentinel-2 data utilisation method used to build the estimation model of 
Above-ground Carbon Stock in mangroves were schematically presented in Figure 2. 

 
Figure 2. The flowchart of study methods used for mapping and calculating the AGC of 
mangrove forests 

2.2.1 Data collection 
The image utilised in this study was derived from Sentinel-2 MSI Level-2A data from the 
European Space Agency (ESA), which includes multispectral data that has completed 
the previous pre-processing stage (Table 1). The data was obtained from the Remote 
Sensing Research Center, National Research and Innovation Agency (BRIN), Indonesia’s 
official institution in image data acquisition. The downloaded image was a Level 2A 
image product that has been ortho into the UTM/WGS84 projection. This product was 
generated using a Digital Elevation Model (DEM) to project the image into cartographic 
coordinates. 

Table 1. Sentinel-2 satellite image specifications include spatial resolution and spectral 
resolution (ESA, 2012; ESA, 2015) 

Spatial resolution (m) Spectral resolution (nm) 
10 Blue (~490 nm), Green (~560 nm), Red (~665 nm), NIR (~842) 
20 Vegetation Red Edge (~705 nm, ~740 nm, ~783nm, ~865 nm), and 

SWIR (~1610 nm and ~2190 nm) 
60 Coastal Aerosol (~443 nm), Water Vapour (~940 nm), and Cirrus 

band (~1375 nm) 
 
2.2.2 Field data collection 
Field data were collected from July 1st – 6th, 2022, considering this month was the dry 
season, so the field activities were not constrained by rain. The satellite image used was 
Sentinel 2-L2A composite with an acquisition period from January 2nd, 2021 to June 
26th, 2022. The Sentinel 2-L2A satellite image set produces a cloud-free annual period 
composite. Another consideration was based on information from the Ngurah Rai Forest 
Park (Tahura Ngurah Rai). In 2021 – 2022 there were no significant changes in 
mangroves (1132 ha), so composite satellite imagery can be used. 

In this study, 40 field points were taken with a division of 30 points (75%) to build 
the model and 10 points (25%) to validate the model. Creating these field points uses a 
random sampling method and is adjusted to the field conditions that consider 
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accessibility at each point. A 10-by-10-meter square plot was taken at each location. 
The plot size was adjusted to Sentinel-2 resolution of 10 meters. The transect line was 
made perpendicular to the shoreline or river to the mainland. The transect line was a 
modification of Kauffman & Donato (2012), which was previously in the form of a circle, 
while in this study, the plot was square, which adjusts the shape of the pixels in the 
remote sensing image (Figure 3). 

 
Figure 3. Schematic of plot layout for mangrove sampled (Source: modification from 
Kauffman & Donato, (2012)) 

Identification of mangrove species used an ecological approach by considering the 
characteristics of mangroves and growth zones. Meanwhile, DBH was measured in each 
plot for trees with a diameter of 10 cm because this size has a significantly contributes 
to the estimation of above-ground biomass (Brown, 2002). Diameter at breast height 
(DBH) was measured at the height of an adult's chest or approximately 1.3 meters from 
the ground. The calculation of DBH will be different for each condition, so that the 
measurement rules can be seen in Figure 4. 

 
Figure 4. Estimating diameter at breast height (DBH) for irregular mangrove trees 
(Source: modified from Pearson et al., (2005)) 

2.2.3 Remote sensing data processing and image classification 
Classifying mangroves and non-mangrove was carried out on the Google Earth Engine 
(GEE) platform. The Sentinel 2-L2A image set with less than 20% cloud cover produceed 
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a cloud-free annual period composite in the Benoa Bay area and its surroundings. The 
cloud masking process utilised the Quality Assessment (QA) band and the median 
reducer function available in GEE. The use of the QA band removes cloud contamination 
in each image, while the median reducer function was used to select the mean pixel 
value of the entire stack of images used. From these results, an image is generated to 
avoids pixel value that are too bright (e.g., clouds) or too dark (e.g., shadows). 

Furthermore, the mangrove ecosystem's specific area of interest (AOI) was selected 
by masking using three parameters. These parameters included digital elevation model 
(DEM) less than 50 meters, Normalized Difference Vegetation Index (NDVI) greater than 
0.25, and Modified Normalized Difference Water Index (MNDWI) greater than -0.5. The 
elevation model utilized the Shuttle Radar Topography Mission (SRTM) data available 
on the GEE platform. Assuming that mangroves grow and are detected in lowland areas, 
a DEM of less than 50 meters was chosen. At the same time, the NDVI and MNDWI 
indices were obtained through digital image transformation from Sentinel 2A data. The 
vegetation index used for the classification process in this study includes Simple Ratio 
(SR), NDVI, MNDWI, Green Chlorophyll Vegetation Index (GCVI), and Modular Mangrove 
Recognition Index (MMRI). 

In this study, we used the random forest (RF) classification method to categorise the 
study site into two different land covers (mangrove and non-mangrove) through visual 
observation of false colour images (NIR, SWIR, Red). The RF algorithm is known for its 
high accuracy in predicting outcomes for classification and regression problems and is 
also robust against noise (Breiman, 2001; Rodriguez-Galiano et al., 2012). It achieves 
this by combining the predictions of multiple decision trees, and each trained on a 
different subset of the data. The decision to use RF is based on the fact that this 
algorithm can estimate the relative importance of each input feature, which can be 
helpful in feature selection and understanding the underlying factors contributing to 
the outcome. We classify using 100 decision trees, with five variables per split. 

In many cases, 100 trees can be enough to achieve good performance with a random 
forest model, especially for smaller datasets and more straightforward problems. This 
was also stated by Oshiro et al., (2012) that an RF must have some trees between 64 – 
128 trees. In addition, choosing five variables per split is because using a small number 
of variables can increase the diversity of trees in the forest, resulting in better 
performance on complex data sets. The number of variables per split determines how 
many features are considered at each decision tree split (Regier et al., 2023). When a 
smaller number of variables is selected, each tree is forced to consider a different 
subset of features, which increases the diversity of the trees in the forest. A spatial filter 
was built based on the “Connected Pixel Count” function in GEE to minimise errors in 
pixel sets. This function removes pixels not connected by an identical set of pixels. This 
filter takes at least ten connected pixels to reach the minimum connection value. The 
validation test in the classification process uses a confusion matrix, which is accurate 
in validating satellite and field image results (Han et al., 2012). 

2.2.4 Calculation of Vegetation Indices 
The NDVI is the most widespread vegetation indicator for calculating forest biomass (Li 
et al., 2007). However, using NDVI needs to accurately characterize forest biomass 
estimates or even carbon estimates (Foody et al., 2001). In this study, we compare and 
combine seven vegetation indices (Table 2) to build an estimation model for above-
ground mangrove carbon stock including NDVI, Modified Red Edge-Simple Ratio (mRE-
SR), Difference Vegetation Index (DVI), Inverted Red Edge Chlorophyll Index (IRECI), 
Red-Edge Simple Ratio (SRre), Chlorophyll Index Red Edge (Clre), and Total Vegetation 
Ratio Index (TRVI). 
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Table 2. Equations of vegetation indices used for above-ground mangrove carbon 
stock model development 

Vegetation Indices Equations References 
NDVI (Normalized Difference 
Vegetation Index) 𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Ramdani et al., (2019); 
Pham et al., (2018); 
Rouse et al., (1973) 

mRE-SR (Modified Red Edge-
Simple Ratio) 𝑚𝑅𝐸­𝑆𝑅 =

(
𝑁𝐼𝑅

𝑅𝑒𝑑 𝐸𝑑𝑔𝑒) − 1

√(
𝑁𝐼𝑅

𝑅𝑒𝑑 𝐸𝑑𝑔𝑒) + 1

 

Zhu et al., (2017); 
Pu & Landry, (2012) 

DVI (Difference Vegetation 
Index) 

𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅𝑒𝑑 Hong Wei et al., (2019); 
Tucker, (1980) 

IRECI (Inverted Red Edge 
Chlorophyll Index) 𝐼𝑅𝐸𝐶𝐼 =

(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(
𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 1
𝑅𝑒𝑑 𝐸𝑑𝑔𝑒 2)

 
Clevers et al., (2000) 

SRre (Red-Edge Simple 
Ratio) 𝑆𝑅𝑟𝑒 =

𝑁𝐼𝑅

𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
 

Hallik et al., (2019); 
Jordan, (1969) 

Clre (Chlorophyll Index Red 
Edge) 𝐶𝑙𝑟𝑒 = (

𝑁𝐼𝑅

𝑅𝑒𝑑 𝐸𝑑𝑔𝑒
) − 1 

Gitelson et al., (2003); 
Gitelson et al., (2006) 

TRVI (Total Ratio Vegetation 
Index) 𝑇𝑅𝑉𝐼 = √

𝑁𝐼𝑅

𝑅𝑒𝑑
 

Fadaei et al., (2012) 

 
2.2.5 Estimation of Above Ground Carbon (AGC) 
Before obtaining the AGC value, the above-ground biomass (AGB) of mangroves was 
calculated for each species found. The AGB calculation uses an allometric equation 
designed for use in Asian mangroves (Table 3), so it is very relevant to be used in 
Indonesia. Allometric equations can estimate mangrove biomass using the DBH 
parameter (Kumar & Mutanga, 2017). 

Table 3. Allometric equations were used in this study to determine AGB (D is tree DBH 
in cm; ρ is wood density in g cm-3) 

Species Equation Wood density 
(ρ)a 

Reference 

Bruguiera gymnorhiza 0,0754 ∗ 𝜌 ∗ 𝐷2,505 0.8683 Kauffman & Cole (2010) 
Rhizophora apiculata 0,043 ∗ 𝐷2,63 0.8814 Komiyama et al., (2005) 
Rhizophora mucronata 0,128 ∗ 𝐷2,60 0.8483 Fromard et al., (1998) 
Sonneratia alba 0,3841 ∗ 𝜌 ∗ 𝐷2,101 0.6443 Fromard et al., (1998) 
Xylocarpus granatum 0,1832 ∗ 𝐷2,2 0.6721 Komiyama et al., (2005) 

Note: a World Agroforestry Center (2022)  

AGC was computed from AGB based on the rules published in the Indonesian 
National Standard, (2011) 7724:2011, in which 0.47 or 47% of biomass is carbon. 
Fourqurean et al., (2019) calculate AGC with the following equation: 𝐴𝐺𝐶 = 𝐴𝐺𝐵 ∗
0,47. 

2.2.6 AGC model development 
In this study, the AGC estimation approach for one independent variable uses a linear 
regression model, while for more than one independent variable using a multiple 
regression model. The dependent variable was AGC, while the independent variable was 
a predetermined vegetation index. The best model will be selected from this processing 
based on the combination of the highest coefficient of determination (R2) and the 
validation results with the lowest error. 
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2.2.7 Accuracy assessment and model validation 
This study split the data into two groups: 25% for model validation and 75% for model 
construction. The coefficient of determination (R2) is used to determine the model's 
accuracy, and the R2 value of ≥ 0.8 is deemed to be high enough for the model to be run. 
The validation was performed on ten field data points (25%). AGC results from the 
model will be compared with field data as validation. The errors value is calculated 
using the Root Mean Square Error (RMSE). The advantage of RMSE is that it avoids 
taking the absolute value, which is undesirable in many mathematical calculations 
(Savage et al., 2013; Chai & Draxler, 2014). 

3. RESULTS AND DISCUSSION 

3.1 Identified mangrove species characteristics 

The species we found in the research points are shown in Figure 5. The data were 
collected at 40 points in this study, which contain of 30 points (75%) to develop the 
AGC model, and 10 points (25%) to assess the accuracy. Determined sampling points 
based on the physical character variations so that the optimum predictions from a 
limited sample were obtained. 

We identified five mangrove species at the research location in Benoa Bay. The 
species were Rhizophora apiculata (dominant at 11 points), Rhizophora mucronata 
(dominant at 10 points), Sonneratia alba (dominant at 18 points), Xylocarpus granatum 
(dominant at 1 point), and Bruguiera gymnorhiza (not dominant). Rhizophora sp. is 
frequently founded at the research location by Cerón-Souza et al., (2010) that 
Rhizophora sp. was the most well-known species in tropical coastal mangrove 
ecosystems. 

 
Figure 5. Mangrove species at coastal study in Benoa Bay; (a) Rhizophora apiculata, (b) 
Rhizophora mucronata, (c) Sonneratia alba, (d) Xylocarpus granatum, and (e) Bruguiera 
gymnorhiza 

The DBH size varies, ranging from 6.43 cm (Xylocarpus granatum) to 55.1 cm 
(Sonneratia alba). The dominant Rhizophora apiculata and Rhizophora mucronata had 
the highest average DBH: 29.3 cm and 28.85 cm. According to Komiyama et al., (2008), 
Rhizophora apiculata has a higher density and DBH than Rhizophora mucronata. In this 
study, the AGC measurement ignored the tree height and canopy density parameters 
but used DBH parameters. The DBH variable provides an accurate estimation for 
biomass measurement (Abdul-Hamid et al., 2022). 
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3.2 Image classification and extraction of mangrove forests 

The differences between mangrove and non-mangrove objects on Sentinel-2 composite 
RGB false colour (NIR, SWIR, red) images are shown in Figure 6. Mangrove objects are 
dark brown because they have relatively high values of NIR, SWIR, and red bands 
compared to other objects. According to Wang et al., (2018), the NIR and red bands are 
sensitive to the greenness of the vegetation, while according to Sadeghi et al., (2015), 
the SWIR bands are sensitive to soil moisture levels (mangrove habitat is affected by 
tides). 

 
Figure 6. Mangrove view (in red colour) from composite RGB false colour (bands of NIR, 
SWIR, red) of Sentinel-2 data 

This research focused on the mangroves in the coast of Benoa Bay, Bali Province. 
The satellite images were Sentinel-2 cloud-free composite (January–December 2020). 
The mangrove area was detected at the research location around 1,134.92 ha (Figure 
7). The classification of mangrove and non-mangrove using the RF method based on 
several parameters has relatively high results, namely Overall Accuracy (OA) of 0.984 
and kappa coefficient of 0.961. 

The classification outcomes based on the Sentinel-2 image show substantial 
agreement with the field data, as indicated by the kappa coefficient (Dan et al., 2016). 
The high value of accuracy in the classification results was due to the use of limited 
classes (mangrove and non-mangrove), determination of uniform sample points (Dong 
et al., 2020), tidal duration, and percentage of cloud cover (Nguyen et al., 2020). Using 
multi-parameters with good sensitivity for mangrove forest detection in the RF 
classification process was proven to increase the accuracy during the classification 
process. 
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Figure 7. The extent of mangrove forests generated from Sentinel-2 (composite period 
January – December 2020) over the coasts of Benoa Bay, Bali Province 

3.3 Above-ground Carbon Stocks 

The calculation of AGB and AGC at the sample points is shown in Table 4. Based on 
these results, point 13 has the highest AGC value (175.77 tons/ha) among other 
sampling points, while point 23 has the lowest AGC value (29.77 tons/ha). The AGC 
estimation model was built assuming that AGB is closely related to tree diameter (DBH) 
and wood density. AGB affects the amount of AGC stored in each tree, so an increase in 
biomass is positively correlated with an increase in carbon (Purnamasari et al., 2021). 

Table 4. Biomass and carbon stock calculation results 
Data grouping Sample Points AGB (ton/ha) AGC (ton/ha) Dominant species 

Model (75%) 1 67.70 31.82 S. alba 
2 74.38 34.96 S. alba 
3 229.18 107.72 S. alba 
4 157.76 74.15 S. alba 
5 210.05 98.72 S. alba 
6 193.95 91.15 S. alba 
7 171.12 80.43 S. alba 
8 279.32 131.28 S. alba 
9 73.96 34.76 S. alba 
10 129.27 60.75 R. apiculata 
11 262.63 123.44 R. mucronata 
12 242.87 114.15 R. mucronata 
13 373.98 175.77 R. mucronata 
14 156.81 73.70 S. alba 
15 116.53 54.77 S. alba 
16 215.19 101.14 R. apiculata 
17 173.13 81.37 S. alba 
18 188.99 88.83 R. mucronata 
19 166.03 78.03 R. apiculata 
20 205.46 96.57 R. mucronata 
21 280.85 132.01 R. mucronata 



 

Forest and Society Vol. 7(1): 116-134 125 

 

Suardana et al. (2023) 

Data grouping Sample Points AGB (ton/ha) AGC (ton/ha) Dominant species 
22 123.31 57.96 R. mucronata 
23 63.34 29.77 R. mucronata 
24 79.84 37.52 R. apiculata 
25 147.75 69.44 R. apiculata 
26 159.25 74.85 R. apiculata 
27 261.76 123.03 R. mucronata 
28 309.94 145.67 S. alba 
29 79.16 37.21 X. granatum 
30 68.05 31.98 R. apiculata 

Validation 
(25%) 

31 178.45 83.87 S. alba 
32 133.52 62.75 R. apiculata 
33 211.09 99.21 S. alba 
34 74.48 35.01 S. alba 
35 223.38 104.99 S. alba 
36 90.09 42.34 R. apiculata 
37 126.44 59.43 R. apiculata 
38 335.24 157.56 R. mucronata 
39 193.49 90.94 S. alba 
40 156.85 73.72 R. apiculata 

 
The species that dominated all sampling points were Sonneratia alba, but the 

highest AGC value was found at sample points dominated by Rhizophora 
mucronata species. These results are by Iksan et al., (2019) and Purnamasari et al., 
(2021), where Rhizophora sp. has higher biomass and carbon than other species. The 
amount of carbon stock in mangrove stands is influenced by DBH, biomass density, and 
canopy cover (Suwa et al., 2021). Based on observations at the study site, canopy cover 
at the sample point of Rhizophora mucronata dominance was higher than at the sample 
point of Sonneratia alba dominance. 

3.4 Relationship of field biomass and sentinel image data, and model assessment 

 
Figure 8. Relationships of observed AGC with Sentinel-2 multispectral bands in the 
visible, red edge, and infrared regions. Plots were arranged from nil to high carbon 

The relationship between field AGC and Sentinel-2 multispectral band (visible, red 
edge, and infrared) are shown in Figure 8. Visible bands (blue, green, red), red edge 1, 
and SWIR have a relatively low relationship to AGC, even visible bands have an inverse 
relationship. Red edge 2, red edge 3, and NIR have a reasonable correlation with AGC 
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ranging from 0.8 to 0.86. However, the relationship of multispectral bands (red edge 2, 
red edge 3, NIR) with field AGC has a minor prediction error ranging from 16.51 Mg/ha 
to 20.04 Mg/ha (Table 4), so the resulting model has not had good enough. 

The relationship between field AGC and several vegetation indices are shown in 
Figure 9. The vegetation index used was based on red edge and NIR bands which have 
sensitivity in vegetation detection (Nguy-Robertson et al., 2014; Imran et al., 2020). All 
vegetation indices correlate well with field AGC, ranging from 0.82 to 0.89. IRECI was 
the best vegetation index because it has a prediction error of 13.72 Mg/ha (Table 4). 

 
Figure 9. Relationship of observed AGC with Sentinel-2 derived vegetation indices. Plots 
were arranged from nil to high carbon 

The red edge band is sensitive to vegetation's biophysical parameters, so it was good 
at detecting the vegetation index value (Zhu et al., 2017). The existence of the red edge 
band on Sentinel-2 can also be used to assess vegetation health (Goswami et al., 2021). 
High chlorophyll will absorb more energy in the 670-760 nm spectrum (Curran et al., 
1995). In the electromagnetic spectrum, the red edge was located between the red band 
and NIR band, where there was a rapid change in the reflectance of vegetation in the 
spectrum. 

In this research, a model was made using the combination of vegetation index to 
reduce the prediction error value. We also divided the combination of the vegetation 
index into two parts, namely the vegetation index with red edge bands and the 
vegetation index without red edge bands. The combination of vegetation indices 
resulted in a good correlation ranging from 0.88 to 0.89 (Table 5). The combination of 
IRECI and TRVI was the best, with an 11.09 Mg/ha prediction error. Meanwhile, the best 
combination of vegetation index without a red edge band was TRVI and DVI, with a 
prediction error of 13.63 Mg/ha. 

The division of the combination of vegetation indices with red edge band and 
without red edge bands was done to provide an alternative to using optical satellite 
images that do not yet provide red edge bands (Landsat, SPOT, Planet Scope, etc.) in 
AGC estimation. However, adding a red edge band in the AGC estimation can give better 
results. According to Sibanda et al., (2015) and Dube et al., (2018), the red edge and 
NIR band also have strongly correlate with biomass which is the basis for calculating 
AGC. We hope that in further developments, the red edge band can be applied to all-
optical satellite images. 
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Table 5. Correlation of observed AGC and Sentinel-2-based predictors 

Modeling 
group 

Predictor/s 
Correlation 
with carbon, r 

Agreement / 
correlation of 
observed and 
predicted value, r 

Model prediction 
error, RMSE (Mg 
ha-1) 

Sentinel-2 
multispectral 
bands 

Blue -0.68 0.24 42.51 
Green -0.15 -0.07 27.81 
Red -0.57 0.26 31.89 
Red Edge 1 0.10 0.38 25.34 
Red Edge 2 0.80 0.91 18.31 
Red Edge 3 0.81 0.93 16.51 
NIR 0.86 0.91 20.04 
SWIR 0.19 0.35 26.04 

Sentinel-2 
derived 
vegetation 
indices 

NDVI 0.82 0.76 18.65 
TRVI 0.88 0.78 18.57 
mRE-SR 0.87 0.78 18.19 
Clre 0.89 0.77 18.12 
SRre 0.89 0.77 18.12 
DVI 0.88 0.93 13.97 
IRECI 0.89 0.89 13.72 

Combination 
of sentinel-2 
derived 
vegetation 
indices 

NDVI, TRVI 0.88 0.89 15.73 
TRVI, DVI 0.88 0.93 13.63 
IRECI, DVI 0.88 0.95 11.24 
NDVI, IRECI 0.89 0.95 11.22 
IRECI, TRVI 0.88 0.95 11.09 

 
3.5 Mangrove carbon predictive mapping 

The model with the best algorithm (lowest RMSE and highest r) was then used to 
estimate and map AGC values in the entire research area. The model with the best 
algorithm is shown in the following equation: 
• Sentinel-2 vegetation index (IRECI and TRVI) derived AGC: 

𝑨𝑮𝑪 = 𝟏𝟑. 𝟗𝟗 + 𝟏𝟎𝟒. 𝟕𝟒𝟏 ∗ 𝑰𝑹𝑬𝑪𝑰 + 𝟑. 𝟎𝟐𝟓 ∗ 𝑻𝑹𝑽𝑰   (1) 
• Sentinel-2 vegetation index (TRVI and DVI) derived AGC: 

𝑨𝑮𝑪 = −𝟑𝟑. 𝟑𝟖𝟓 + 𝟐𝟕. 𝟓𝟕𝟔 ∗ 𝑻𝑹𝑽𝑰 + 𝟐𝟎𝟏. 𝟎𝟏𝟐 ∗ 𝑫𝑽𝑰  (2) 

The AGC distribution derived from the Sentinel-2 vegetation indices model with red 
edge bands (IRECI and TRVI) and the Sentinel-2 vegetation index model without red 
edge bands (TRVI and DVI) is presented in Figure 10. AGC (IRECI and TRVI) range from 
21.39 Mg/ha to 214.1 Mg/ha, while AGC (TRVI and DVI) range from 8.02 Mg/ha to 
181.79 Mg/ha. These results are by Mahasani et al., (2021) at the exact location with 
an estimated AGC value range of 0 to 234.55 Mg/ha. 

The estimated spatial distribution of AGC was by the results of field observations. 
The high value of predicted AGC was found in the middle of mangrove forests, where 
mangroves with dense canopy (dominant species: Rhizophora sp.). Likewise, low AGC 
was predicted to be at the edge of mangrove forests (near the sea and land) where 
mangroves with sparse canopy are found (species dominance: Sonneratia sp.). 

The accuracy assessment of the Sentinel-2-based AGC prediction maps reveals that 
their prediction error (RMSE) value ranges from 11.09 Mg/ha to 16.51 Mg/ha, as 
presented in Figure 11. The lowest prediction error was the model developed based on 
combination of sentinel-2 derived vegetation indices (IRECI and TRVI: 11.09 Mg/ha, 
TRVI and DVI: 13.63 Mg/ha). The overall map accuracy ranged from 89% (Sentinel-2 
derived vegetation indices map) to 95.3% (combination Sentinel-2-derived vegetation 
indices map). Correlation coefficient/agreement (r) between measured and predicted 
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biomass computed at 0.93, 0.89, 0.93 and 0.95 for models derived from Sentinel 
multispectral band, Sentinel-2 derived vegetation indices (IRECI), combination 
Sentinel-2 derived vegetation index (TRVI and DVI), and the combination Sentinel-2 
derived vegetation index (IRECI and TRVI), respectively. 

 
Figure 10. Predicted maps of AGC distribution in the study site derived from carbon 
models from (a) Sentinel-2 vegetation index IRECI and TRVI (eq. 1) and (b) Sentinel-2 
vegetation index TRVI and DVI (eq. 2) 

 

 
Figure 11. Accuracy assessment of predicted AGC distribution maps produced from the 
three Sentinel-based models (top panel). Scatter plots of observed and predicted AGC 
values correspond to (a) Sentinel-2 vegetation index IRECI and TRVI based map, (b) 
Sentinel-2 vegetation index TRVI and DVI based map. Dotted lines are 1:1 
correspondence between observed and predicted AGC values 
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The model based on the combination of IRECI and TRVI derived from the Sentinel-2 
image in this study was able to provide vital accuracy in the prediction of AGC. 
Agreement/correlation of predicted and observed AGC values combination IRECI and 
TRVI model was 0.95. The results of this study were able to increase the accuracy of the 
previous study (Sentinel-2 image) developed by Castillo et al., (2017). This study also 
has better accuracy compared to similar studies using optical images, as reported by 
Suardana et al., (2022) using Sentinel-2 images (0.77), Pham & Brabyn, (2017) using 
SPOT images (0.85), Wicaksono et al., (2016) using ALOS VNIR images (0.83), Jachowski 
et al., (2013) used GeoEye images (0.81), Proisy et al., (2007) used IKONOS images 
(0.93), and Li et al., (2007) used Landsat images (0.67). Using a combination of red edge 
and NIR bands is very helpful in increasing the accuracy of the AGC model, where the 
band is susceptible to detecting vegetation density. 

4. CONCLUSION 

In this study, five mangrove species were found in the observation points. The dominant 
species was Rhizophora sp., which contributes to high AGC. The multivariate random 
forest algorithm has shown promising results in identifying mangrove ecosystems (OA 
= 0.984; kappa = 0.961). Overall, Sentinel-2 imagery has potential for mangrove AGC 
estimation and mapping. Based on the validation test result, the combination model of 
the IRECI and TRVI vegetation indices has the lowest prediction error of 11.09 Mg/ha. 
This study also validated the AGC model without red edge bands with the lowest 
prediction error results in the combination model of the vegetation index TRVI and DVI, 
which was 13.63 Mg/ha. The use of red edge and NIR bands is highly recommended in 
building the AGC model because it can increase accuracy. Furthermore, the results of 
this model are recommended to be tested in locations with different characteristics of 
mangrove forests and developed in measurements of below-ground carbon and soil so 
that further accuracy will be known for all estimates of mangrove forest carbon stocks. 
In addition, this model can be further developed in the future, not only for mapping 
mangrove and non-mangrove areas but also their composition, where the zonation of 
major or dominant mangrove species can be mapped. Finally, the developed model 
offered in the current study will be helpful for stakeholders and researchers concerned 
about carbon management in the wetland forest area. 
 
Author Contributions: Author 1, 2, & 3: conceptualization, methodology, investigation, field 
survey, visualization and writing the original draft; Author 4: methodology, field survey, and 
investigation; Author 5: conceptualization, field survey, reviewing the writing, and editing the 
finalized manuscript; Author 6: methodology, investigation, field survey, and writing the original 
draft; Author 7: methodology and investigation; Author 8 & 9: reviewing the writing and editing the 
finalized manuscript; Author 10: QC, reviewing the writing and editing the finalized manuscript. 
 
Competing Interests: The authors declare no conflict of interest. 
 
Acknowledgements: This research is funded by Research Organization for Aeronautics and Space, 
National Research and Innovation Agency (ORPA, BRIN). The authors also would like to express 
the most profound appreciation to all field personnel and local people in Benoa Bay Bali for their 
assistance. We also appreciate the anonymous reviewers of the paper for their helpful and 
constructive comments. The authors also thank the Ngurah Rai Forest Park (Tahura Ngurah Rai) 
Bali for supporting us. 

REFERENCES 

Abdul-Hamid, H., Mohamad-Ismail, F. N., Mohamed, J., Samdin, Z., Abiri, R., Tuan-
Ibrahim, T. M., ... & Naji, H. R. (2022). Allometric equation for aboveground 



 

Forest and Society Vol. 7(1): 116-134 130 

 

Suardana et al. (2023) 

biomass estimation of mixed mature mangrove forest. Forests, 13(2), 1–18. 
https://doi.org/10.3390/f13020325  

Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 
3(3), 313–322. https://doi.org/10.4155/cmt.12.20  

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/ 
10.14569/ijacsa.2016.070603  

Brown, S. (2002). Measuring carbon in forests: Current status and future challenges. 
Environmental Pollution, 116(3), 363–372. https://doi.org/10.1016/S0269-
7491(01)00212-3  

Castillo, J. A. A., Apan, A. A., Maraseni, T. N., & Salmo, S. G. (2017). Estimation and 
mapping of above-ground biomass of mangrove forests and their replacement 
land uses in the Philippines using Sentinel imagery. ISPRS Journal of 
Photogrammetry and Remote Sensing, 134, 70–85. https://doi.org/10.1016/ 
j.isprsjprs.2017.10.016  

Cerón-Souza, I., Rivera-Ocasio, E., Medina, E., Jiménez, J. A., McMillan, W. O., & 
Bermingham, E. (2010). Hybridization and introgression in new world red 
mangroves, Rhizophora (Rhizophoraceae). American Journal of Botany, 97(6), 
945–957. https://doi.org/10.3732/ajb.0900172  

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error 
(MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model 
Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014  

Clevers, J. G. P. W., Jong, S. M. De, Epema, G. F., Addink, E. a, & Box, P. O. (2000). Meris 
and the Red-Edge Index. 2nd EARSeL Workshop, Enschede. 

Curran, P. J., Windham, W. R., & Gholz, H. L. (1995). Exploring the relationship between 
reflectance red edge and chlorophyll concentration in slash pine leaves. Tree 
Physiology, 15(3), 203–206. https://doi.org/10.1093/treephys/15.3.203  

Dan, T. T., Chen, C. F., Chiang, S. H., & Ogawa, S. (2016). Mapping and Change Analysis 
in Mangrove Forest By Using Landsat Imagery. ISPRS Annals of Photogrammetry, 
Remote Sensing and Spatial Information Sciences, III–8(July), 109–116. 
https://doi.org/10.5194/isprsannals-iii-8-109-2016  

Dewanti, L. P. P., Subagiyo, & Wijayanti, D. P. (2020). Analysis of Biomass and Stored 
Carbon Stock in Mangrove Forest Area, Taman Hutan Raya Ngurah Rai Bali. 
Indonesian Journal of Fisheries Science and Technology, 16(3), 219–224. 

Dong, S., Chen, Z., Gao, B., Guo, H., Sun, D., & Pan, Y. (2020). Stratified even sampling 
method for accuracy assessment of land use/land cover classification: a case 
study of Beijing, China. International Journal of Remote Sensing, 41(16), 6427–
6443. https://doi.org/10.1080/01431161.2020.1739349  

Dube, T., Gara, T. W., Mutanga, O., Sibanda, M., Shoko, C., Murwira, A., ... & Hatendi, C. 
M. (2018). Estimating forest standing biomass in savanna woodlands as an 
indicator of forest productivity using the new generation WorldView-2 sensor. 
Geocarto International, 33(2), 178–188. https://doi.org/10.1080/10106049. 
2016.1240717  

ESA. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational 
Services. 

ESA. (2015). Sentinel-2 User Handbook. In ESA Standard Document Date (Issue 1). 
https://doi.org/10.1021/ie51400a018  

Fadaei, H., Suzuki, R., Sakai, T., & Torii, K. (2012). a Proposed New Vegetation Index, the 
Total Ratio Vegetation Index (Trvi), for Arid and Semi-Arid Regions. The 
International Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, XXXIX-B8 (September), 403–407. https://doi.org/ 
10.5194/isprsarchives-xxxix-b8-403-2012  

https://doi.org/10.3390/f13020325
https://doi.org/10.4155/cmt.12.20
https://doi.org/%2010.14569/ijacsa.2016.070603
https://doi.org/%2010.14569/ijacsa.2016.070603
https://doi.org/10.1016/S0269-7491(01)00212-3
https://doi.org/10.1016/S0269-7491(01)00212-3
https://doi.org/10.1016/%20j.isprsjprs.2017.10.016
https://doi.org/10.1016/%20j.isprsjprs.2017.10.016
https://doi.org/10.3732/ajb.0900172
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1093/treephys/15.3.203
https://doi.org/10.5194/isprsannals-iii-8-109-2016
https://doi.org/10.1080/01431161.2020.1739349
https://doi.org/10.1080/10106049.%202016.1240717
https://doi.org/10.1080/10106049.%202016.1240717
https://doi.org/10.1021/ie51400a018
https://doi.org/%2010.5194/isprsarchives-xxxix-b8-403-2012
https://doi.org/%2010.5194/isprsarchives-xxxix-b8-403-2012


 

Forest and Society Vol. 7(1): 116-134 131 

 

Suardana et al. (2023) 

FAO. (2007). The world’s mangroves 1980-2005. In FAO Forestry Paper (Vol. 153). 
Foody, G. M., Cutler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., & Douglas, I. 

A. N. (2001). Mapping the biomass of Bornean tropical rain forest from remotely 
sensed data. Global Ecology & Biogeography, 10(4), 379–387. https://doi.org/ 
10.1046/j.1466-822X.2001.00248.x  

Fourqurean, J. W., Johnson, B., Kauffman, J. B., Kennedy, H., Lovelock, C. E., Megonigal, 
J. P., Rahman, A., Saintilan, N., & Simard, M. (2019). Coastal Blue Carbon. Habitat 
Conservation, Ci, 860. http://www.habitat.noaa.gov/coastalbluecarbon.html  

Fromard, F., Puig, H., Mougin, E., Marty, G., Betoulle, J. L., & Cadamuro, L. (1998). 
Structure, above-ground biomass and dynamics of mangrove ecosystems: New 
data from French Guiana. Oecologia, 115(1–2), 39–53. https://doi.org/10.1007/ 
s004420050489  

Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf 
chlorophyll content and spectral reflectance and algorithms for non-destructive 
chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 
160(3), 271–282. https://doi.org/10.1078/0176-1617-00887  

Gitelson, A. A., Keydan, G. P., & Merzlyak, M. N. (2006). Three-band model for 
noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in 
higher plant leaves. Geophysical Research Letters, 33(11), 2–6. https://doi.org/ 
10.1029/2006GL026457  

Goswami, J., Das, R., Sarma, K. K., & Raju, P. L. N. (2021). Red Edge Position (REP), an 
Indicator for Crop Stress Detection: Implication on Rice (Oryza sativa L). 
International Journal of Environment and Climate Change, December, 88–96. 
https://doi.org/10.9734/ijecc/2021/v11i430396  

Hallik, L., Kuusk, A., Lang, M., & Kuusk, J. (2019). Reflectance properties of hemiboreal 
mixed forest canopies with focus on red edge and near infrared spectral regions. 
Remote Sensing, 11(14). https://doi.org/10.3390/rs11141717  

Han, J., Kamber, M., & Pei, J. (2012). Data Mining Concepts and Techniques (3rd 
Edition). Elsevier. https://doi.org/10.1016/C2009-0-61819-5  

Hastuti, A. W., Suniada, K. I., & Islamy, F. (2017). Carbon Stock Estimation of Mangrove 
Vegetation Using Remote Sensing in Perancak Estuary, Jembrana District, Bali. 
International Journal of Remote Sensing and Earth Sciences (IJReSES), 14(2), 
137. https://doi.org/10.30536/j.ijreses.2017.v14.a2841  

Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances 
and future opportunities. Progress in Physical Geography, 35(1), 87–108. 
https://doi.org/10.1177/0309133310385371  

Hirata, Y., Tabuchi, R., Patanaponpaiboon, P., Poungparn, S., Yoneda, R., & Fujioka, Y. 
(2014). Estimation of aboveground biomass in mangrove forests using high-
resolution satellite data. Journal of Forest Research, 19(1), 34–41. https:// 
doi.org/10.1007/s10310-013-0402-5  

Hong-wei, Z., Huai-liang, C., & Fei-na, Z. (2019). The Modification of Difference 
Vegetation Index (DVI) in middle and late growing period of winter wheat and its 
application in soil moisture inversion. E3S Web of Conferences, 131. 
https://doi.org/10.1051/e3sconf/201913101098  

Iksan, M., Al Zarliani, W. O. D., Nare, L., Hafidhawati, S., & Baena, F. (2019). Biomass 
and Carbon Uptake of Mangrove Forests Pohorua Village, Muna Regency. 
International Journal of Applied Biology, 3(2), 57–64. 

Imran, H. A., Gianelle, D., Rocchini, D., Dalponte, M., Martín, M. P., Sakowska, K., 
Wohlfahrt, G., & Vescovo, L. (2020). VIS-NIR, red-edge and NIR-shoulder based 
normalized vegetation indices response to co-varying leaf and Canopy structural 
traits in heterogeneous grasslands. Remote Sensing, 12(14). https://doi.org/ 

https://doi.org/%2010.1046/j.1466-822X.2001.00248.x
https://doi.org/%2010.1046/j.1466-822X.2001.00248.x
http://www.habitat.noaa.gov/coastalbluecarbon.html
https://doi.org/10.1007/%20s004420050489
https://doi.org/10.1007/%20s004420050489
https://doi.org/10.1078/0176-1617-00887
https://doi.org/%2010.1029/2006GL026457
https://doi.org/%2010.1029/2006GL026457
https://doi.org/10.9734/ijecc/2021/v11i430396
https://doi.org/10.3390/rs11141717
https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/10.30536/j.ijreses.2017.v14.a2841
https://doi.org/10.1177/0309133310385371
https://doi.org/10.1051/e3sconf/201913101098
https://doi.org/%2010.3390/rs12142254


 

Forest and Society Vol. 7(1): 116-134 132 

 

Suardana et al. (2023) 

10.3390/rs12142254  
Indonesian National Standard (SNI). (2011). Pengukuran dan Penghitungan Cadangan 

Karbon – Pengukuran Lapangan untuk Penaksiran Cadangan Karbon Hutan ( 
Ground Based Forest Carbon Accounting ). 

Jachowski, N. R. A., Quak, M. S. Y., Friess, D. A., Duangnamon, D., Webb, E. L., & Ziegler, 
A. D. (2013). Mangrove biomass estimation in Southwest Thailand using machine 
learning. Applied Geography, 45, 311–321. https://doi.org/10.1016/j.apgeog. 
2013.09.024  

Jordan, C. F. (1969). Derivation of Leaf-Area Index From Quality of Light on Forest Floor. 
Ecological Society of America, 50(4), 663–666. https://doi.org/205.133.226.104  

Kauffman, J. B., & Cole, T. G. (2010). Micronesian mangrove forest structure and tree 
responses to a severe typhoon. Wetlands, 30(6), 1077–1084. https://doi.org/ 
10.1007/s13157-010-0114-y  

Kauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring and 
reporting of structure, biomass and carbon stocks in mangrove forests. Working 
Paper 86. CIFOR, Bogor, Indonesia. 

Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity 
of mangrove forests: A review. Aquatic Botany, 89(2), 128–137. 
https://doi.org/10.1016/j.aquabot.2007.12.006  

Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for 
estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471–
477. https://doi.org/10.1017/S0266467405002476  

Kumar, L., & Mutanga, O. (2017). Remote sensing of above-ground biomass. Remote 
Sensing, 9(9), 1–8. https://doi.org/10.3390/rs9090935  

Li, X., Yeh, A. G. O., Wang, S., Liu, K., Liu, X., Qian, J., & Chen, X. (2007). Regression and 
analytical models for estimating mangrove wetland biomass in South China using 
Radarsat images. International Journal of Remote Sensing, 28(24), 5567–5582. 
https://doi.org/10.1080/01431160701227638  

Mahasani, I. G. A. I., Osawa, T., Adnyana, I. W. S., Suardana, A. A. M. A. P., & Chonnaniyah. 
(2021). Carbon stock estimation and mapping of mangrove forest using ALOS-2 
PALSAR-2 in Benoa Bay Bali, Indonesia. IOP Conference Series: Earth and 
Environmental Science, 2(1), 429–443. https://doi.org/10.1088/1755-1315/ 
944/1/012044  

Mahasani, I. I., Osawa, T., & Sandi Adnyana, I. W. (2021). Estimation and Mapping of 
Above Ground Biomass of Mangrove Forest Using Alos-2 Palsar-2 in Benoa Bay, 
Bali, Indonesia. ECOTROPHIC : Jurnal Ilmu Lingkungan, 15(1), 75. 
https://doi.org/10.24843/ejes.2021.v15.i01.p07  

Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, 
D. C., ... & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for 
global climate change mitigation. Nature Climate Change, 5(12), 1089–1092. 
https://doi.org/10.1038/ nclimate2734  

Nguy-Robertson, A. L., Peng, Y., Gitelson, A. A., Arkebauer, T. J., Pimstein, A., Herrmann, 
I., ... & Bonfil, D. J. (2014). Estimating green LAI in four crops: Potential of 
determining optimal spectral bands for a universal algorithm. Agricultural and 
Forest Meteorology, 192–193, 140–148. https://doi.org/10.1016/j.agrformet. 
2014.03.004  

Nguyen, H. H., Tran, L. T. N., Le, A. T., Nghia, N. H., Duong, L. V. K., Nguyen, H. T. T., ... & 
Premnath, C. F. S. (2020). Monitoring changes in coastal mangrove extents using 
multi-temporal satellite data in selected communes, Hai Phong City, Vietnam. 
Forest and Society, 4(1), 256–270. https://doi.org/10.24259/fs.v4i1.8486  

Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random 

https://doi.org/%2010.3390/rs12142254
https://doi.org/10.1016/j.apgeog.%202013.09.024
https://doi.org/10.1016/j.apgeog.%202013.09.024
https://doi.org/205.133.226.104
https://doi.org/%2010.1007/s13157-010-0114-y
https://doi.org/%2010.1007/s13157-010-0114-y
https://doi.org/10.1016/j.aquabot.2007.12.006
https://doi.org/10.1017/S0266467405002476
https://doi.org/10.3390/rs9090935
https://doi.org/10.1080/01431160701227638
https://doi.org/10.1088/1755-1315/%20944/1/012044
https://doi.org/10.1088/1755-1315/%20944/1/012044
https://doi.org/10.24843/ejes.2021.v15.i01.p07
https://doi.org/10.1038/%20nclimate2734
https://doi.org/10.1016/j.agrformet.%202014.03.004
https://doi.org/10.1016/j.agrformet.%202014.03.004
https://doi.org/10.24259/fs.v4i1.8486


 

Forest and Society Vol. 7(1): 116-134 133 

 

Suardana et al. (2023) 

forest? Conference: 8th International Conference on Machine Learning and Data 
Mining in Pattern Recognition, MLDM 2012, Lecture Notes in Computer Science, 
7376 LNAI(July 2012), 154–168. https://doi.org/10.1007/978-3-642-31537-
4_13  

Patil, V., Singh, A., Naik, N., & Unnikrishnan, S. (2015). Estimation of Mangrove Carbon 
Stocks by Applying Remote Sensing and GIS Techniques. Wetlands, 35(4), 695–
707. https://doi.org/10.1007/s13157-015-0660-4  

Pearson, T., Walker, S., & Brown, S. (2005). Sourcebook for Land use , Land-use change 
and forestry Projects. Retrieved from https://www.winrock.org/wp-
content/uploads/2016/03/Winrock-BioCarbon_Fund_Sourcebook-
compressed.pdf  

Pham, L. T. H., & Brabyn, L. (2017). Monitoring mangrove biomass change in Vietnam 
using SPOT images and an object-based approach combined with machine 
learning algorithms. ISPRS Journal of Photogrammetry and Remote Sensing, 
128, 86–97. https://doi.org/10.1016/j.isprsjprs.2017.03.013  

Pham, T. D., Yoshino, K., Le, N. N., & Bui, D. T. (2018). Estimating aboveground biomass 
of a mangrove plantation on the Northern coast of Vietnam using machine 
learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A 
data. International Journal of Remote Sensing, 39(22), 7761–7788. 
https://doi.org/10.1080/01431161.2018.1471544  

Proisy, C., Couteron, P., & Fromard, F. (2007). Predicting and mapping mangrove 
biomass from canopy grain analysis using Fourier-based textural ordination of 
IKONOS images. Remote Sensing of Environment, 109(3), 379–392. 
https://doi.org/10.1016/j.rse.2007.01.009  

Pu, R., & Landry, S. (2012). A comparative analysis of high spatial resolution IKONOS 
and WorldView-2 imagery for mapping urban tree species. Remote Sensing of 
Environment, 124, 516–533. https://doi.org/10.1016/j.rse.2012.06.011  

Purnamasari, E., Kamal, M., & Wicaksono, P. (2021). Comparison of vegetation indices 
for estimating above-ground mangrove carbon stocks using PlanetScope image. 
Regional Studies in Marine Science, 44. https://doi.org/10.1016/j.rsma.2021. 
101730  

Ramdani, F., Rahman, S., & Giri, C. (2018). Principal polar spectral indices for mapping 
mangroves forest in South East Asia: study case Indonesia. International Journal 
of Digital Earth, 12(10), 1103–1117. https://doi.org/10.1080/17538947. 
2018.1454516  

Regier, P., Duggan, M., Myers-Pigg, A., & Ward, N. (2023). Effects of random forest 
modeling decisions on biogeochemical time series predictions. Limnology and 
Oceanography: Methods, 21(1), 40–52. https://doi.org/10.1002/lom3.10523  

Richards, D. R., & Friess, D. A. (2016). Rates and drivers of mangrove deforestation in 
Southeast Asia, 2000-2012. Proceedings of the National Academy of Sciences of 
the United States of America, 113(2), 344–349. https://doi.org/10.1073/pnas. 
1510272113  

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. 
(2012). An assessment of the effectiveness of a random forest classifier for land-
cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 
67(1), 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002  

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring Vegetation 
Systems In The Great Plains With Erts. In Remote Sensing Center. 
https://doi.org/10.1021/jf60203a024  

Sadeghi, M., Jones, S. B., & Philpot, W. D. (2015). A linear physically-based model for 
remote sensing of soil moisture using short wave infrared bands. Remote Sensing 

https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/10.1007/978-3-642-31537-4_13
https://doi.org/10.1007/s13157-015-0660-4
https://www.winrock.org/wp-content/uploads/2016/03/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock-BioCarbon_Fund_Sourcebook-compressed.pdf
https://doi.org/10.1016/j.isprsjprs.2017.03.013
https://doi.org/10.1080/01431161.2018.1471544
https://doi.org/10.1016/j.rse.2007.01.009
https://doi.org/10.1016/j.rse.2012.06.011
https://doi.org/10.1016/j.rsma.2021.%20101730
https://doi.org/10.1016/j.rsma.2021.%20101730
https://doi.org/10.1080/17538947.%202018.1454516
https://doi.org/10.1080/17538947.%202018.1454516
https://doi.org/10.1002/lom3.10523
https://doi.org/10.1073/pnas.%201510272113
https://doi.org/10.1073/pnas.%201510272113
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.1021/jf60203a024


 

Forest and Society Vol. 7(1): 116-134 134 

 

Suardana et al. (2023) 

of Environment, 164, 66–76. https://doi.org/10.1016/j.rse.2015.04.007  
Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O’Connor, 

F. M., & Dalvi, M. (2013). Air quality modelling using the Met Office Unified Model 
(AQUM OS24-26): Model description and initial evaluation. Geoscientific Model 
Development, 6(2), 353–372. https://doi.org/10.5194/gmd-6-353-2013  

Sibanda, M., Mutanga, O., & Rouget, M. (2015). Examining the potential of Sentinel-2 
MSI spectral resolution in quantifying above ground biomass across different 
fertilizer treatments. ISPRS Journal of Photogrammetry and Remote Sensing, 
110, 55–65. https://doi.org/10.1016/j.isprsjprs.2015.10.005  

Sidik, F., Fernanda Adame, M., & Lovelock, C. E. (2019). Carbon sequestration and fluxes 
of restored mangroves in abandoned aquaculture ponds. Journal of the Indian 
Ocean Region, 15(2), 177–192. https://doi.org/10.1080/19480881.2019. 
1605659  

Suardana, A. M. A. P., Anggraini, N., Aziz, K., Nandika, M. R., Ulfa, A., Wijaya, A. D., ... & 
Dewanti, R. (2022). Biomass Estimation Model and Carbon Dioxide Sequestration 
for Mangrove Forest Using Sentinel-2 in Benoa Bay, Bali. International Journal of 
Remote Sensing and Earth Sciences, 19(1), 91–100.  

Suwa, R., Rollon, R., Sharma, S., Yoshikai, M., Albano, G. M. G., Ono, K., ... & Nadaoka, K. 
(2021). Mangrove biomass estimation using canopy height and wood density in 
the South East and East Asian regions. Estuarine, Coastal and Shelf Science, 
248(May), 106937. https://doi.org/10.1016/j.ecss. 2020.106937  

Tucker, C. J. (1980). A spectral method for determining the percentage of green herbage 
material in clipped samples. Remote Sensing of Environment, 9(2), 175–181. 
https://doi.org/10.1016/0034-4257(80)90007-3  

Wang, B., Jia, K., Liang, S., Xie, X., Wei, X., Zhao, X., Yao, Y., & Zhang, X. (2018). 
Assessment of Sentinel-2 MSI spectral band reflectances for estimating 
fractional vegetation cover. Remote Sensing, 10(12), 1–20. https://doi.org/ 
10.3390/rs10121927  

Wicaksono, P., Danoedoro, P., Hartono, H., Nehren, U., & Ribbe, L. (2011). Preliminary 
work of mangrove ecosystem carbon stock mapping in small island using remote 
sensing: above and below ground carbon stock mapping on medium resolution 
satellite image. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, 
8174(October 2011), 81741B. https://doi.org/10.1117/12.897926  

Wicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2016). Mangrove biomass carbon 
stock mapping of the Karimunjawa Islands using multispectral remote sensing. 
International Journal of Remote Sensing, 37(1), 26–52. https://doi.org/ 
10.1080/01431161.2015.1117679  

World Agroforestry Center. (2022). Wood density. Accessed from 
http://db.worldagroforestry.org/wd  

Zhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Liu, H., & He, Z. (2017). Exploring the 
potential of world view-2 red-edge band-based vegetation indices for estimation 
of mangrove leaf area index with machine learning algorithms. Remote Sensing, 
9(10). https://doi.org/10.3390/rs9101060  

https://doi.org/10.1016/j.rse.2015.04.007
https://doi.org/10.5194/gmd-6-353-2013
https://doi.org/10.1016/j.isprsjprs.2015.10.005
https://doi.org/10.1080/19480881.2019.%201605659
https://doi.org/10.1080/19480881.2019.%201605659
https://doi.org/10.1016/j.ecss.%202020.106937
https://doi.org/10.1016/0034-4257(80)90007-3
https://doi.org/%2010.3390/rs10121927
https://doi.org/%2010.3390/rs10121927
https://doi.org/10.1117/12.897926
https://doi.org/%2010.1080/01431161.2015.1117679
https://doi.org/%2010.1080/01431161.2015.1117679
http://db.worldagroforestry.org/wd
https://doi.org/10.3390/rs9101060

	1. INTRODUCTION
	2. MATERIALS AND METHODS
	2.1 Study Site
	2.2 Methods
	2.2.1 Data collection
	2.2.2 Field data collection
	2.2.3 Remote sensing data processing and image classification
	2.2.4 Calculation of Vegetation Indices
	2.2.5 Estimation of Above Ground Carbon (AGC)
	2.2.6 AGC model development
	2.2.7 Accuracy assessment and model validation


	3. RESULTS AND DISCUSSION
	3.1 Identified mangrove species characteristics
	3.2 Image classification and extraction of mangrove forests
	3.3 Above-ground Carbon Stocks
	3.4 Relationship of field biomass and sentinel image data, and model assessment
	3.5 Mangrove carbon predictive mapping

	4. CONCLUSION
	REFERENCES

