e-ISSN: 2614-8811

Published by Departement of Mathematics, Hasanuddin University, Indonesia https://journal.unhas.ac.id/index.php/jmsk/index

Vol. 20, No. 3, May 2024, pp. 580-595

DOI: 10.20956/j.v20i3.31827

Study Of Fuzzy Groups In $\mathbb{Z}_p - \{\overline{\mathbf{0}}\}$ Group Kajian Grup Fuzzy Dalam Grup $\mathbb{Z}_p - \{\overline{\mathbf{0}}\}$

Imelda Bo'bo' Batunna^{1*}, Harina O.L Monim^{2*}, Junianto Sesa^{3*}

*) Jurusan Matematika dan Statistika, Fakultas MIPA, Universitas Papua

Email: batunnaimelda13@gmail.com¹, monim.harina@gmail.com², j.sesa@unipa.ac.id³

Received: 16 November 2023, revised: 13 March 2024, accepted: 13 March 2024

Abstract

Group theory is a field of abstract algebra that studies the structure of sets. Some concepts that are developments of group theory are fuzzy subgroups. Suppose that G is a group, a fuzzy subset μ of G is called a fuzzy subgroup of G if it satisfies $\mu(xy) \ge \min\{\mu(x) \mu(y)\}$ and $\mu(x^{-1}) \ge \mu(x)$ for each $x, y \in G$. However, not all groups have fuzzy subgroups. The aim of this research is to show that $\mathbb{Z}_p - \{\overline{0}\}$ is a classical group with multiplication operations in the group and determine fuzzy subgroups in the group $\mathbb{Z}_p - \{\overline{0}\}$. From the research results, it is found that the subset $\mathbb{Z}_p - \{\overline{0}\}$ with prime modulo integers 5 and 11 is a classical group with group multiplication operations and the fuzzy subset in the group $\mathbb{Z}_p - \{\overline{0}\}$ is a fuzzy subgroup and in general The properties of the classical group apply to the fuzzy subgroup, namely the singularity of the identity and the singularity of the inverse. However, there are properties of classical groups that do not apply to fuzzy subgroups, namely the law of cancellation.

Keywords: Fuzzy subgroup, Group, Modulo, Subgroup

Abstrak

Teori grup merupakan salah satu bidang kajian aljabar abstrak yang mempelajari struktur himpunan. Beberapa konsep yang merupakan pengembangan dari teori grup adalah subgrup fuzzy. Misalkan didefinisikan G adalah grup, suatu subhimpunan fuzzy μ dari G disebut subgrup fuzzy dari G jika memenuhi $\mu(xy) \ge \min\{\mu(x)\,\mu(y)\}$ dan $\mu(x^{-1}) \ge \mu(x)$ untuk setiap $x,y \in G$. Namun tidak semua grup mempunyai subgrup fuzzy. Tujuan dari penelitian ini adalah menunjukkan $\mathbb{Z}_P - \{\overline{0}\}$ merupakan grup klasik dengan operasi perkalian dalam grup dan menentukan subgrup fuzzy dalam grup $\mathbb{Z}_P - \{\overline{0}\}$. Dari hasil penelitian diperoleh subhimpunan $\mathbb{Z}_P - \{\overline{0}\}$ dengan bilangan bulat modulo prima 5 dan 11 merupakan grup klasik dengan operasi perkalian grup dan subhimpunan fuzzy dalam grup $\mathbb{Z}_P - \{\overline{0}\}$ merupakan subgrup fuzzy dan secara umum sifat pada grup klasik berlaku pada subgrup fuzzy

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

yaitu ketunggalan identitas dan ketunggalan invers. Namun terdapat sifat pada grup klasik yang tidak berlaku pada subgrup fuzzy yaitu hukum pencoretan.

Kata kunci: Grup, Subgrup, Subgrup Fuzzy, Modulo

1. Pendahuluan

Teori grup merupakan suatu himpunan tak kosong *G* yang dilengkapi dengan sebuah operasi yaitu operasi biner. Operasi ini haruslah memenuhi aturan-aturan tertentu yaitu tertutup, asosiatif, memiliki elemen identitas, dan setiap elemennya memiliki invers. Didalam suatu grup terdapat subgrup [5].

Menurut [11], subgrup yaitu himpunan bagian tak kosong dari suatu grup G dan merupakan grup terhadap operasi yang sama dengan grup G. Beberapa konsep yang merupakan pengembangan dari teori grup adalah subgrup fuzzy. Misalkan didefinisikan G adalah grup, suatu subhimpunan fuzzy μ dari G disebut subgrup fuzzy dari G jika memenuhi $\mu(xy) \geq \min\{\mu(x) \mu(y)\}$ dan $\mu(x^{-1}) \geq \mu(x)$ untuk setiap $x, y \in G$. Namun tidak semua grup mempunyai subgrup fuzzy. Contoh penyangkalnya diberikan oleh [1] yaitu grup (\mathbb{Z}_3 , +) tidak memuat subgrup fuzzy terhadap definisi μ yang diberikan.

Penelitian sebelumnya terkait subgrup fuzzy diantaranya dalam penelitian [2] suatu subgrup dikatakan subgrup fuzzy jika kardinal suatu grup merupakan pangkat prima dan untuk grup klasik dikatakan subgrup fuzzy jika terdapat relasi biner antar subgrup fuzzy. Dalam penelitian [7] membahas tentang grup fuzzy menjadi multi fuzzy dengan menggabungkan tiga cabang matematika untuk mendapatkan struktur besar yang membawa beberapa sifat yang dapat diperoleh dari sifat-sifat hinpunan fuzzy, aljabar dan teori multi fuzzy. Penelitian yang lebih jauh tentang subgrup fuzzy adalah dalam penelitian [3] yang membahas tentang *Picture Fuzzy subgroup* atau pengertian subgrup fuzzy lebih lanjut. Dalam penelitian [1] membahas tentang perkembangan konsep dari grup klasik. Secara umum karakteristik yang ditemukan dalam grup klasik juga dapat diterapkan pada subgrup fuzzy karena subgrup fuzzy memenuhi sifat- sifat pada grup contoh $\mathbb Z$ grup tak hingga berlaku pada subgrup fuzzy. Namun dalam penelitian lain yaitu penelitian [4] membahas tentang pembentukan subgrup fuzzy atas suatu grup klasik dan sifat terkait subgrup fuzzy yakni syarat cukup dan perlu dari suatu subhimpunan fuzzy merupakan subgrup fuzzy. Dengan memberikan contoh grup $\mathbb Z_5 - \{\overline{0}\}$ dan berlaku pada subgrup fuzzy menggunakan definisi order.

Maka dalam penelitian ini akan ditunjukkan bahwa order grup prima kecuali elemen nol grup hingga berlaku pada subgrup fuzzy menggunakan teorema-teorema dari hasil penelitian [1] dan menggunakan modifikasi definisi order dari [4].

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

2. TINJAUAN PUSTAKA

2.1 Grup

Definisi 2.1 [5]

Himpunan G yang tidak kosong di katakan membentuk sebuah grup jika dalam G terdapat operasi biner, yang disebut produk dan dilambangkan dengan" * "sedemikian sehingga memenuhi:

- a. $a, b \in G$ berlaku $a * b \in G$ (tertutup).
- b. $a, b, c \in G$ berlaku a * (b * c) = (a * b) * c (aturan assosiatif).
- c. Terdapat elemen identitas $e \in G$ sehingga a * e = e * a = a untuk setiap $a \in G$ (ada elemen identitas di G).
- d. Untuk setiap $a \in G$ terdapat $a^{-1} \in G$ sedemikian sehingga $a^{-1} * a = a * a^{-1} = e$ (ada invers di G).

2.2 Grup Himpunan Bilangan Bulat Modulo n [8]

Himpunan bilangan bulat modulo n: $\mathbb{Z}_n = {\overline{0}, \overline{1}, ..., \overline{n-1}}$ dengan n bilangan bulat positif. Selanjutnya mendefinisikan operasi penjumlahan $+_n$ dengan definisi

$$\bar{a} +_n \bar{b} = \overline{a + b}$$

untuk setiap $\bar{a}, \bar{b} \in \mathbb{Z}_n$ dengan $\bar{a}, \bar{b} \in \mathbb{Z}$. Akan ditunjukkan bahwa $+_n$ dalam \mathbb{Z}_n .

Untuk setiap $\bar{a}, \bar{b} \in \mathbb{Z}_n$, maka $\bar{a} +_n \bar{b} = \overline{a + b} \in \mathbb{Z}_n$. Selanjutnya diambil sebarang $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in \mathbb{Z}_n$. Misalkan $\bar{a} = \bar{c}$ dan $\bar{b} = \bar{d}$ sehingga $a \equiv c \pmod{n}$ dan $b \equiv d \pmod{n}$. Jadi ada $s, t \in \mathbb{Z}$ sedemikian sehingga

$$a - c = ns \operatorname{dan} b - d = nt$$

Ini berarti

$$a + b - (c + d) = (a - c) + (b - d) = ns + nt = n(s + t)$$

Dengan demikian, $a + b \equiv (c + d) \pmod{n}$, jadi $\bar{a} + \bar{b} = \bar{c} + \bar{d}$. Ini juga berati bahwa $\bar{a} +_n \bar{b} = \bar{c} +_n \bar{d}$. Maka $+_n$ terbukti operasi biner dalam \mathbb{Z}_n .

Selanjutnya menunjukkan $(\mathbb{Z}_n, +_n)$ merupakan grup

- 1. Sifat tertutup
 - Untuk setiap $\bar{a}, \bar{b} \in \mathbb{Z}_n$ berlaku $\bar{a} +_n \bar{b} = \overline{a+b} \in \mathbb{Z}_n$
- 2. Sifat asosiatif

Untuk setiap $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n$ berlaku $(\bar{a} +_n \bar{b}) +_n \bar{c} = \bar{a} +_n (\bar{b} +_n \bar{c})$. Diambil sebarang $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n$, berlaku

$$(\bar{a}+_n\bar{b})+_n\bar{c} = \overline{a+b}+_n\bar{c})$$

$$= \overline{(a+b)+c}$$

$$= \overline{a+(b+c)}$$

$$= \bar{a}+_n\overline{b+c}$$

$$= \bar{a}+_n(\bar{b}+_n\bar{c})$$

3. Elemen identitas

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

Terdapat $\bar{0} \in \mathbb{Z}_n$ sehingga untuk setiap $\bar{a} \in \mathbb{Z}_n$ berlaku $\bar{0} +_n \bar{a} = \bar{a} +_n \bar{0}$. Diambil sebarang $\bar{a} \in \mathbb{Z}_n$ berlaku $\bar{0} +_n \bar{a} = \bar{0} + \bar{a} = \bar{a}$ dan $\bar{a} +_n \bar{0} = \bar{a} + \bar{a} = \bar{a}$

4. Elemen invers

Untuk setiap $\bar{a} \in \mathbb{Z}_n$ terdapat $\overline{-a} \in \mathbb{Z}_n$ sehingga $\bar{a} + n \overline{-a} = \bar{0} = \overline{-a} + n \bar{a}$.

Berdasarkan (1), (2) dan (3), himpunan \mathbb{Z}_n merupakan grup terhadap operasi $+_n$. Grup $(\mathbb{Z}_n, +_n)$ dikenal dengan **grup bilangan bulat modulo** n.

2.3 Sifat-sifat Grup Klasik

Teorema 2.3.1 [5]

Jika G adalah grup, maka:

- a. Elemen identitas G adalah tunggal (artinya G mempunyai elemen paling banyak satu elemen identitas)
- b. Setiap $a \in G$ mempunyai invers tunggal di G.
- c. Untuk setiap $a \in G$, $(a^{-1})^{-1} = a$ (sifat ini digunakan dalam pembuktian sifat subgrup klasik)

Teorema 2.3.2 [5]

Diberikan α , b dalam grup G, maka persamaan $\alpha * x = b$ dan $y * \alpha = b$ memiliki penyelesaian tunggal untuk x dan y di G. Khususnya dua hukum pencoretan,

a * u = a * w maka u = w

dan

u * a = w * a maka u = w

di dalam G.

2.4 Subgrup

Definisi 2.4.1 [5]

Subhimpunan H yang tidak kosong dari suatu grup G dikatakan sebagai subgrup dari G jika H membentuk grup terhadap operasi yang sama pada grup G.

Teorema 2.4.2 [6]

Diketahui H tak kosong dari grup G adalah subgrup dari G jika dan hanya jika

- 1. $a, b \in H$ maka $ab \in H$
- 2. $a \in H \text{ maka } a^{-1} \in H$

2.5 Order Grup

Definisi 2.5.1 [10]

Order grup G adalah banyaknya elemen dari suatu grup G. Jika order suatu grup adalah berhingga maka grup tersebut disebut grup berhingga. Sebaliknya jika order suatu grup tak hingga maka grup tersebut disebut grup tak hingga.

2.6 Order Elemen Grup

Definisi 2.6.1 [10]

Misalkan G suatu grup dan $g \in G$. Order dari g dinotasikan |g| yang menyatakan bilangan bulat positif terkecil n sehingga memenuhi $g^n = e$, dengan e adalah elemen identitas.

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

2.7 Grup Himpunan bilangan bulat n Terhadap Operasi Perkalian [8]

Himpunan bilangan bulat modulo n: $\mathbb{Z}_n = \{\overline{0}, \overline{1}, ..., \overline{n-1}\}$ dengan n bilangan bulat positif. Selanjutnya mendefinisikan operasi perkalian \times_n dengan definisi

$$\bar{\alpha} \times_n \bar{b} = \overline{\alpha \times b}$$

untuk setiap $\bar{\alpha}, \bar{b} \in \mathbb{Z}_n$ dengan $\bar{\alpha}, \bar{b} \in \mathbb{Z}$. Selanjutnya menunjukkan (\mathbb{Z}_n, \times_n) merupakan grup

Sifat tertutup

Untuk setiap $\bar{\alpha}, \bar{b} \in \mathbb{Z}_n$ berlaku $\bar{\alpha} \times_n \bar{b} = \overline{\alpha \times b} \in \mathbb{Z}_n$

2. Sifat asosiatif

Untuk setiap $\bar{\alpha}, \bar{b}, \bar{c} \in \mathbb{Z}_n$ berlaku $(\bar{\alpha} \times_n \bar{b}) \times_n \bar{c} = \bar{\alpha} \times_n (\bar{b} \times_n \bar{c})$.

Diambil sebarang $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_n$, berlaku

$$(\bar{\alpha} \times_n \bar{b}) \times_n \bar{c} = \bar{\alpha} \times \bar{b} \times_n \bar{c})$$

$$= \underline{(\alpha \times b) \times c}$$

$$= \bar{\alpha} \times (\bar{b} \times c)$$

$$= \bar{\alpha} \times_n \bar{b} \times \bar{c}$$

$$= \bar{\alpha} \times_n (\bar{b} \times_n \bar{c})$$

3. Elemen identitas

Terdapat $\overline{1} \in \mathbb{Z}_n$ sehingga untuk setiap $\overline{\alpha} \in \mathbb{Z}_n$ berlaku $\overline{1} \times_n \overline{\alpha} = \overline{\alpha} \times_n \overline{1}$. Diambil sebarang $\overline{\alpha} \in \mathbb{Z}_n$ berlaku $\overline{1} \times_n \overline{\alpha} = \overline{1 \times \alpha} = \overline{\alpha}$ dan $\overline{\alpha} \times_n \overline{1} = \overline{\alpha} \times \overline{1} = \overline{\alpha}$

4. Elemen invers

Untuk setiap $\bar{\alpha} \in \mathbb{Z}_n$ dan $\bar{\alpha} \neq \bar{0}$, memiliki invers jika dan hanya jika $FPB(\alpha,n)=1$ atau bilangan bulat prima. Dengan demikian secara umum, tidak semua anggota dari $\mathbb{Z}_n - \{\bar{0}\}$ memiliki invers. Sebagai contoh $\mathbb{Z}_4 - \{\bar{0}\}$, untuk menunjukkan $\mathbb{Z}_4 - \{\bar{0}\}$ memiliki invers akan digunakan tabel Cayley sebagai berikut:

Tabel 4.1 Tabel Cayley $\mathbb{Z}_4 - \{\overline{0}\}$ Terhadap Perkalian

	<i>J J</i> T	()	
×	1	2	3
1	1	2	3
$\bar{2}$	$\overline{2}$	$\overline{0}$	$\bar{2}$
3	3	$\overline{2}$	$\overline{1}$

Dari tabel terlihat bahwa elemen yang memiliki invers adalah $\bar{1}$ dan $\bar{3}$. Sehingga, secara umum ($\mathbb{Z}_n - \{\bar{0}\}, \times_n$) bukanlah suatu grup.

2.8 Subgrup Fuzzy

Definisi 2.8.1 [9]

Misalkan G adalah suatu grup. Suatu subhimpunan fuzzy μ dari G disebut subgrup fuzzy dari G jika memenuhi:

- 1. $\mu(xy) \ge \mu(x) \land \mu(y) \forall x, y \in G \ dan$
- 2. $\mu(x^{-1}) \ge \mu(x) \ \forall x \in G$.

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

 μ merupakan fungsi keanggotaan yang memetakan setiap $x \in G$ ke interval [0,1]. Nilai dari $\mu(x)$ dalam interval [0,1] disebut nilai keanggotaan dari elemen x dalam μ , sedangkan interval [0,1] disebut ruang keanggotaan.

Teorema 2.8.2 [1]

Setiap grup fuzzy memenuhi hukum pencoretan

Teorema 2.8.3 [1]

Misalkan μ adalah suatu grup fuzzy dari G berlaku

- 1. Jika è unsur identitas dari μ dan e unsur identitas di G maka è = e
- 2. Untuk setiap $a \in \mu$ dan misalkan b invers a di μ dan c invers a di G maka b = c

Teorema 2.8.4 [1]

Suatu grup fuzzy µ dalam grup G memiliki identitas tunggal.

Teorema 2.8.5 [1]

Setiap elemen dari grup fuzzy µ dalam grup G memiliki invers tunggal.

3. METODE PENELITIAN

Penelitian ini menggunakan studi literatur. Adapun langkah-langkah yang digunakan dalam penelitian ini sebagai berikut:

- 1. Menunjukkan $\mathbb{Z}_P \{\overline{0}\}, p = 5,11$ merupakan grup klasik.
- 2. Menentukan subgrup fuzzy
 - a. Menentukan order elemen grup pada $\mathbb{Z}_P \{\overline{0}\}\$.
 - b. Menentukan subgrup fuzzy dalam grup $\mathbb{Z}_P \{\overline{0}\}\$.

4. HASIL DAN PEMBAHASAN

4.1 Menunjukkan $\mathbb{Z}_P - \{\overline{\mathbf{0}}\}$ Merupakan Grup Dengan Operasi Perkalian Menunjukan $\mathbb{Z}_5 - \{\overline{\mathbf{0}}\}$ Merupakan Grup Terhadap Operasi Perkalian Modulo 5

Tabei	4.2 Tabel Cay	$\text{ley } \mathbb{Z}_5 - \{0\}$	Ternadap Per	rkanan
×	1	2	3	4
1	1	2	3	4
$\overline{2}$	2	4	1	3
3	3	1	4	2
<u>4</u>	4	3	2	1

Berdasarkan hasil dari tabel di atas terbukti bahwa sifat-sifat grup terpenuhi tertutup, asosiatif, terdapat unsur identitas dan memiliki invers, maka $\mathbb{Z}_5 - \{\overline{0}\}$ merupakan grup terhadap perkalian.

Menunjukan $\mathbb{Z}_{11} - \{\overline{0}\}$ Merupakan Grup Terhadap Operasi Perkalian Modulo 11

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

	Tabel 4.3 Tabel Cayley $\mathbb{Z}_{11} - \{0\}$ Terhadap Perkalian									
×	1	2	3	$\overline{4}$	5	<u></u> 6	7	8	9	10
1	1	2	3	<u>4</u>	5	<u></u> 6	7	8	9	10
$\overline{2}$	$\overline{2}$	$\overline{4}$	<u></u> 6	8	$\overline{10}$	1	3	5	7	9
3	3	<u></u> 6	9	1	$\overline{4}$	7	$\overline{10}$	$\overline{2}$	5	8
$\overline{4}$	$\overline{4}$	8	1	5	9	$\bar{2}$	<u></u> 6	$\overline{10}$	3	7
5	5	$\overline{10}$	$\overline{4}$	9	3	8	$\overline{2}$	7	1	<u></u> 6
<u></u> 6	<u></u> 6	1	7	$\overline{2}$	8	3	9	4	$\overline{10}$	5
7	7	3	$\overline{10}$	<u></u> 6	$\bar{2}$	9	5	1	8	$\bar{4}$
8	8	5	$\overline{2}$	$\overline{10}$	7	$\bar{4}$	1	9	<u></u> 6	3
9	9	7	5	3	1	$\overline{10}$	8	<u> </u>	$\overline{4}$	$\bar{2}$
$\overline{10}$	$\overline{10}$	9	8	7	<u> </u>	5	$\bar{4}$	$\bar{3}$	$\bar{2}$	$\bar{1}$

Tabel 4.3 Tabel Cayley $\mathbb{Z}_{11} - \{\overline{0}\}$ Terhadap Perkalian

Berdasarkan hasil dari tabel di atas terbukti bahwa sifat-sifat grup terpenuhi yaitu tertutup, asosiatif, terdapat unsur identitas dan memiliki invers, maka $\mathbb{Z}_{11} - \{\overline{0}\}$ merupakan grup terhadap perkalian

Dari hasil Tabel 4.2 dan Tabel 4.3 dapat dilihat bahwa subhimpunan $\mathbb{Z}_5 - \{\overline{0}\}$ dan $\mathbb{Z}_{11} - \{\overline{0}\}$ adalah grup karena memenuhi semua aksioma grup. Setelah menunjukkan $\mathbb{Z}_5 - \{\overline{0}\}$ dan $\mathbb{Z}_{11} - \{\overline{0}\}$ adalah grup, selanjutnya menentukan $\mathbb{Z}_5 - \{\overline{0}\}$ dan $\mathbb{Z}_{11} - \{\overline{0}\}$ adalah subgrup fuzzy.

4.2 Menentukan Subgrup Fuzzy Pada Grup $\mathbb{Z}_P - \{\overline{\mathbf{0}}\}\$

Dalam menentukan subgrup fuzzy menggunakan definisi 2.7 dan diberikan suatu definisi $\mu(x)$ dalam interval [0,1] yang berarti nilai keanggotaan dari elemen x dalam μ . Definisi $\mu(x)$ yang diberikan adalah definisi dari [4] yang telah dimodifikasi yakni $\mu(x) = \frac{1}{2 \operatorname{ord}(x)}$.

Menentukan $\mathbb{Z}_5 - \{\overline{\mathbf{0}}\}$ merupakan subgrup fuzzy

Untuk menentukan $\mathbb{Z}_5 - \{\overline{0}\}$ merupakan subgrup fuzzy, terlebih dahulu dicari order elemen $\mathbb{Z}_5 - \{\overline{0}\}$ menggunakan sifat pada order elemen grup yaitu $g^n = e$.

Order dari $\mathbb{Z}_5 - \{\overline{\mathbf{0}}\}$ adalah 4, sedangkan order setiap elemen dari $\mathbb{Z}_5 - \{\overline{\mathbf{0}}\}$ adalah sebagai berikut:

- a. Order dari 1 adalah 1, karena $1^1 = 1$
- b. Order dari 2 adalah 4. karena $2^4 = 1$
- c. Order dari 3 adalah 4, karena $3^4 = 1$
- d. Order dari 4 adalah 2, karena $4^2 = 1$

Diketahui bahwa $\mathbb{Z}_5 - \{\overline{0}\}$ adalah grup terhadap perkalian. Didefinisikan $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dengan $\mu(x) = \frac{1}{2 \ ord(x)}$ untuk setiap $x \in \mathbb{Z}_5 - \{\overline{0}\}$ merupakan subhimpunan fuzzy atas grup $\mathbb{Z}_5 - \{\overline{0}\}$. Selanjutnya akan diselidiki apakah μ merupakan subgrup fuzzy atas grup $\mathbb{Z}_5 - \{\overline{0}\}$.

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

Tabel 4.6 Hasil Operasi Subhimpunan Fuzzy μ

\overline{x}	y	$x \times_5 y$	$\frac{\mu(x\times_5 y)}{\mu(x\times_5 y)}$	$\mu(x)$	$\mu(y)$	$\min\{\mu(x),\mu(y)$
<u></u>	<u>-</u>	<u> </u>				
1	1	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\overline{1}$	$\overline{2}$	$\overline{2}$	1	1	1	1
			8	$\overline{2}$	8	8
1	3	3	1	1	1	<u>1</u>
_	_	_	8	2	8	8
1	$\bar{4}$	$\bar{4}$	<u>1</u>	1_	<u>1</u>	<u>1</u>
_	-	<u> </u>	4	2	4	4
2	1	$\bar{2}$	1 0	1	1	$\frac{1}{0}$
$\bar{2}$	<u>2</u>	$\overline{4}$	8 1	8 1	2 1	8 1
۷	2	7	$\frac{1}{4}$	8	8	$\frac{1}{8}$
$\bar{2}$	3	1	1	1	1	1
			$\overline{2}$	8	8	8
$\overline{2}$	$\bar{4}$	3	1	1	1	1
	_	_	8	8	$\frac{\overline{4}}{4}$	8
3	1	3	$\frac{1}{2}$	1	1	$\frac{1}{2}$
_	_	<u> </u>	8 1	8	2	8 1
3	2	1	1 2	<u>-</u>	<u> </u>	$\frac{1}{0}$
3	3	$\overline{4}$	2 1	8 1	8 1	8 1
3	3	т	$\frac{1}{4}$	8	8	- 8
3	$\bar{4}$	$\overline{2}$	1	1	1	1
			8	8	$\overline{4}$	8
$\overline{4}$	1	4	1_	1	1	1
_	_	_	4	4	2	$\frac{\overline{4}}{4}$
4	2	3	$\frac{1}{6}$	1	$\frac{1}{6}$	$\frac{1}{6}$
$\bar{4}$	<u> </u>	<u> </u>	8 1	4 1	8 1	8 1
4	3	2	$\frac{1}{0}$	<u>/</u>	$\frac{1}{0}$	$\frac{1}{0}$
$\bar{4}$	$\bar{4}$	1	o 1	1	o 1	o 1
•	1	*	1 2 1 8 1 8 1 4 1 8 1 8 1 8 1 8 1 8 1 8 1 8	1 2 1 2 1 2 1 8 1 8 1 8 1 8 1 8 1 8 1 8	1 2 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	$ \frac{1}{2} $ $ \frac{1}{8} $

Tabel 4.7 Invers Subhimpunan Fuzzy μ

x	x^{-1}	$\mu(x)$	$\mu(x^{-1})$
<u> </u>	<u>1</u>	1	1
7	3	$\frac{\overline{2}}{1}$	$\frac{\overline{2}}{1}$
L	3	8	8

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

3	$\bar{2}$	1	1
		8	8
$\bar{4}$	$\overline{4}$	1	1
		$\frac{\overline{A}}{A}$	4

Berdasarkan hasil dari Tabel 4.6 diperoleh bahwa $\mu(x \times_5 y) \ge \min\{\mu(x), \mu(y)\}$ untuk setiap $x, y \in G$ dan dari Tabel 4.7 diperoleh $\mu(x^{-1}) \ge \mu(x)$ untuk setiap $x \in G$. Dengan μ merupakan suatu subgrup fuzzy atas grup $\mathbb{Z}_5 - \{\overline{0}\}$.

Menentukan $\mathbb{Z}_{11} - \{\overline{\mathbf{0}}\}$ merupakan subgrup fuzzy

Untuk menentukan $\mathbb{Z}_{11} - \{\overline{0}\}$ merupakan subgrup fuzzy, terlebih dahulu dicari order elemen $\mathbb{Z}_{11} - \{\overline{0}\}$ menggunakan sifat pada order elemen grup yaitu $g^n = e$. Order dari $\mathbb{Z}_{11} - \{\overline{0}\}$ adalah 10, sedangkan order setiap elemen dari $\mathbb{Z}_{11} - \{\overline{0}\}$ adalah sebagai berikut:

- a. Order dari 1 adalah 1, karena $1^1 = 1$
- b. Order dari 2 adalah 10, karena $2^{10} = 1$
- c. Order dari 3 adalah 5, karena $3^5 = 1$
- d. Order dari 4 adalah 5, karena $4^5 = 1$
- e. Order dari 5 adalah 5, karena $5^5 = 1$
- f. Order dari 6 adalah 10, karena $6^{10} = 1$
- g. Order dari 7 adalah 10, karena $7^{10} = 1$
- h. Order dari 8 adalah 10, karena $8^{10} = 1$
- i. Order dari 9 adalah 5, karena $9^5 = 1$
- i. Order dari 10 adalah 10, karena $10^{10} = 1$

Diketahui bahwa $\mathbb{Z}_{11} - \{\overline{0}\}$ adalah grup terhadap perkalian. Didefinisikan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$ dengan $\mu(x) = \frac{1}{2 \ ord(x)}$ untuk setiap $x \in \mathbb{Z}_{11} - \{\overline{0}\}$ merupakan subhimpunan fuzzy atas grup $\mathbb{Z}_{11} - \{\overline{0}\}$. Selanjutnya akan diselidiki apakah μ merupakan subgrup fuzzy atas grup $\mathbb{Z}_{11} - \{\overline{0}\}$.

Tabel 4.8 Hasil Operasi Subhimpunan Fuzzy μ

		1400	r iio masii operas	r buommp	anan razz	P
х	у	$x \times_{11} y$	$\mu(x \times_{11} y)$	$\mu(x)$	$\mu(y)$	$min\{\mu(x),\mu(y)$
<u>1</u>	1	1	1	1	1	1
			$\overline{2}$	2	$\overline{2}$	$\overline{2}$
$\bar{1}$	$\overline{2}$	$\overline{2}$	1	1	1	1
			$\overline{20}$	$\overline{2}$	$\overline{20}$	$\overline{20}$
$\overline{1}$	3	3	1	1	1	1
			$\overline{10}$	$\overline{2}$	$\overline{10}$	$\overline{10}$
$\bar{1}$	$\bar{4}$	$\bar{4}$	1	1	1	1
			$\overline{10}$	$\overline{2}$	$\overline{10}$	$\overline{10}$
1	5	5	1	1	1	1
			$\overline{10}$	2	$\overline{10}$	$\overline{10}$
1	<u></u> 6	<u></u> 6	1	1	1	1
			$\overline{20}$	$\overline{2}$	$\overline{20}$	$\overline{20}$

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

1	7	7	$\frac{1}{20}$	$\frac{1}{2}$	$\frac{1}{20}$	$\frac{1}{20}$
1	8	8	$\frac{\overline{20}}{1}$	$\frac{2}{1}$	$\frac{\overline{20}}{1}$	$\frac{20}{1}$
1	9	9	$\frac{\overline{20}}{10}$	$\frac{2}{1}$	$ \begin{array}{r} \hline 20 \\ \hline 1 \\ \hline 10 \\ \hline 1 \end{array} $	$\frac{20}{1}$
1	10	10	$\frac{\overline{10}}{\overline{20}}$	$ \frac{1}{2} $	$\frac{10}{20}$	$ \begin{array}{r} \hline 20 \\ 1 \\ \hline 20 \\ \hline 1 \\ \hline 10 \\ \hline 1 \\ \hline 20 \\ \hline 20 \\ \hline 1 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ $
÷	÷	:	:	:	:	:
÷	÷	:	: :	:	:	: :
÷	÷	:	; 1	÷	:	
$\overline{10}$	1	$\overline{10}$		1	: 1/2 1	: 1
	_	-	20	20	2	20
10	2	9	$\frac{1}{40}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
10	3	8	$ \begin{array}{r} \overline{20} \\ \underline{1} \\ 10 \\ 1 \end{array} $	$ \begin{array}{r} \hline 20 \\ \hline 1 \\ \hline 20 \\ 1 \end{array} $	20 1	20 1
10	3	O	$\frac{1}{20}$	$\frac{1}{20}$	10	$\frac{1}{20}$
$\overline{10}$	$\overline{4}$	7	20 1	20 1	10 1	1
			$\overline{20}$	$\overline{20}$	$\overline{10}$	$\overline{20}$
$\overline{10}$	5	<u></u> 6	$ \begin{array}{r} \overline{20} \\ \underline{1} \\ 10 \\ 1 \end{array} $	$ \begin{array}{r} \overline{20} \\ \underline{1} \\ \overline{20} \\ 1 \end{array} $	$ \begin{array}{c} \overline{10} \\ \underline{1} \\ \overline{10} \\ 1 \end{array} $	1
	_	=	10	20	10	20
10	<u></u> 6	5	$\frac{1}{10}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
10	7	$\overline{4}$	10 1	20 1	$\frac{\overline{20}}{1}$	20 1
10	,	4	10	20	20	$\frac{1}{20}$
$\overline{10}$	8	3	1	$ \begin{array}{r} \hline 20 \\ 1 \\ \hline 20 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 20 \\ \hline 1 \end{array} $	1	1
			$\overline{10}$	20	20	$\overline{20}$
$\overline{10}$	9	$\overline{2}$	$ \begin{array}{r} \hline 10 \\ 1 \\ \hline 10 \\ 1 \\ \hline 10 \\ \hline 10 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 22 \\ \hline 2 \\ 2 \\ \hline 2 \\ 3 \\ \hline 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ $	1	$ \begin{array}{r} \hline 20 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 10 \\ 1 \end{array} $	$ \begin{array}{r} \hline 20 \\ 1 \\ \hline 20 \\ 1 \\ \hline 20 \\ 1 \\ \hline 20 \\ \hline 1 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 20 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ \hline 1 \\ \hline 1 \\ 1 \\ 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
		-	20	$\frac{\overline{20}}{1}$	10	20
10	$\overline{10}$	1	$\frac{1}{2}$	$\frac{1}{20}$		$\frac{1}{20}$
			Z	20	20	20

Tabel 4.9 Invers Subhimpunan Fuzzy μ

		1 .	
x	x^{-1}	$\mu(x)$	$\mu(x^{-1})$
<u> </u>	Ī	1_	1_
$\overline{2}$	<u> </u>	2 1	2 1
3	<u> 4</u>	$\frac{\overline{20}}{1}$	$\frac{\overline{20}}{1}$
		$\overline{10}$	$\overline{10}$

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

4	3	$\frac{1}{10}$	$\frac{1}{10}$
<u>5</u>	9	$ \begin{array}{r} \hline 10 \\ \hline 1 \\ \hline 10 \\ 1 \end{array} $	$\frac{\overline{10}}{1}$
<u></u> 6	$\bar{2}$	$\frac{10}{1}$	$\frac{\overline{10}}{1}$
7	8	20 1	$\frac{\overline{20}}{1}$
8	7	20 1	20 1
9	5	$ \begin{array}{r} \overline{20} \\ \underline{1} \\ \overline{10} \\ 1 \end{array} $	$\frac{\overline{20}}{1}$
10	10	$\frac{10}{20}$	$\frac{\overline{10}}{1}$ $\overline{20}$

Berdasarkan hasil dari Tabel 4.7 diperoleh bahwa $\mu(x \times_{11} y) \ge \min\{\mu(x), \mu(y)\}$ untuk setiap $x, y \in G$ dan dari Tabel 4.9 diperoleh $\mu(x^{-1}) \ge \mu(x)$ untuk setiap $x \in G$. Dengan μ merupakan suatu subgrup fuzzy atas grup $\mathbb{Z}_{11} - \{\overline{0}\}$.

Berdasarkan hasil dalam menentukan subgrup fuzzy, terbukti bahwa grup $\mathbb{Z}_5 - \{\overline{0}\}$ dan $\mathbb{Z}_{11} - \{\overline{0}\}$ merupakan subgrup fuzzy. Maka langkah selanjutnya adalah membuktikan teoremateorema dari penelitian [1]. Perbedaan dari penelitian sebelumnya adalah penelitian [1] membuktikan teorema-teorema yang diberikan secara langsung sedangkan dalam penelitian ini teorema-teorema dari [1] akan dibuktikan menggunakan kasus khusus yaitu $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$.

4.3 Pembuktian Teorema dari [1] Menggunakan Kasus Khusus $\mu: \mathbb{Z}_p - \{\overline{0}\} \rightarrow [0,1]$

Pembuktian Teorema 2.8.2 akan dibuktikan berdasarkan kasus khusus pada grup $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$. Berikut adalah pembuktiannya:

a. Membuktikan Hukum Pencoretan Grup Dengan Kasus Khusus Grup $\mu: \mathbb{Z}_5 - \{\overline{\mathbf{0}}\} \rightarrow [\mathbf{0},\mathbf{1}]$

Misalkan $\mathbb{Z}_5 - \{\overline{0}\}$ grup dan μ grup fuzzy di $\mathbb{Z}_5 - \{\overline{0}\}$ didefinisikan $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dengan $\mu(x) = \frac{1}{2 \operatorname{ord}(x)}$. Ambil $\overline{1}, \overline{2}, \overline{4} \in \mathbb{Z}_5 - \{\overline{0}\}$, perhatikan bahwa $\operatorname{ord}(\overline{1}) = 1, \operatorname{ord}(\overline{2}) = 4, \operatorname{ord}(\overline{4}) = 2$

2 maka derajat keanggotaan berturut-turut adalah $\mu(\bar{1}) = \frac{1}{2}$, $\mu(\bar{2}) = \frac{1}{8}$, $\mu(\bar{4}) = \frac{1}{4}$. Akan ditunjukkan

- i. Jika $\mu(\bar{1}*\bar{2})=\mu(\bar{1}*\bar{4})$ maka $\mu(\bar{2})=\mu(\bar{4})$ (hukum pencoretan kiri)
- ii. Jika $\mu(\overline{2}*\overline{1}) = \mu(\overline{4}*\overline{1})$ maka $\mu(\overline{2}) = \mu(\overline{4})$ (hukum pencoretan kanan)

Perhatikan bahwa

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

i. Jika $\mu(\overline{1}*\overline{2}) = \mu(\overline{1}*\overline{4})$ maka $\mu(\overline{2}) = \mu(\overline{4})$. Jelas bahwa $\overline{1}*\overline{2}$, $\overline{1}*\overline{4} \in \mathbb{Z}_5 - \{\overline{0}\}$ memiliki sifat tertutup dan $\overline{1}$ memiliki invers $\overline{1}$ maka

$$\mu(\overline{1} * (\overline{1} * \overline{2}) = \mu(\overline{1} * (\overline{1} * \overline{4}))$$

$$\Rightarrow \mu((\overline{1} * \overline{1}) * \overline{2}) = \mu((\overline{1} * \overline{1}) * \overline{4})$$

$$\Rightarrow \mu(\overline{1} * \overline{2}) = \mu(\overline{1} * \overline{4})$$

$$\Rightarrow \mu(\overline{2}) = \mu(\overline{4})$$

$$\Rightarrow \left(\frac{1}{8}\right) \neq \left(\frac{1}{2}\right)$$

Jadi diperoleh jika $\mu(\overline{1}*\overline{2}) = \mu(\overline{1}*\overline{4})$ maka $\mu(\overline{2}) \neq \mu(\overline{4})$ atau tidak memenuhi hukum pencoretan kiri

ii. Jika $\mu(\overline{2}*\overline{1}) = \mu(\overline{4}*\overline{1})$ maka $\mu(\overline{2}) = \mu(\overline{4})$ Jelas bahwa $\overline{1}*\overline{2}$, $\overline{1}*\overline{4} \in \mathbb{Z}_5 - \{\overline{0}\}$ memiliki sifat tertutup dan $\overline{1}$ memiliki invers $\overline{1}$ maka

$$\mu(\overline{2}*\overline{1}))*\overline{1}) = \mu((\overline{4}*\overline{1})*\overline{1})$$

$$\Rightarrow \mu(\overline{2}*((1*\overline{1}) = \mu(\overline{4}*((\overline{1}*\overline{1}))$$

$$\Rightarrow \mu(\overline{2}*\overline{1}) = \mu(\overline{4}*\overline{1})$$

$$\Rightarrow \mu(\overline{2}) = \mu(4)$$

$$\Rightarrow \left(\frac{1}{8}\right) \neq \left(\frac{1}{4}\right)$$

Jadi diperoleh jika $\mu(\overline{2}*\overline{1})=\mu(\overline{4}*\overline{1})$ maka $\mu(\overline{2})\neq\mu(\overline{4})$ atau tidak memenuhi hukum pencoretan kanan.

b. Membuktikan Hukum Pencoretan Grup Dengan Kasus Khusus Grup $\mu: \mathbb{Z}_{11} - \{\overline{\mathbf{0}}\} \rightarrow [\mathbf{0},\mathbf{1}]$

Misalkan $\mathbb{Z}_{11} - \{\overline{0}\}$ grup dan μ grup fuzzy di $\mathbb{Z}_{11} - \{\overline{0}\}$ didefinisikan μ : $\mathbb{Z}_{11} - \{\overline{0}\} \rightarrow [0,1]$ dengan $\mu(x) = \frac{1}{2 \ ord(x)}$. Ambil $\overline{3}, \overline{6}, \overline{9} \in \mathbb{Z}_{11} - \{\overline{0}\}$, perhatikan bahwa $ord(\overline{3}) = 5, ord(\overline{5}) = 5, ord(\overline{1}) = 5$ maka derajat keanggotaan berturut-turut adalah $\mu(\overline{3}) = \frac{1}{10}, \mu(\overline{6}) = \frac{1}{20}, \mu(\overline{9}) = \frac{1}{10}$. Akan ditunjukkan

- a. Jika $\mu(\overline{3}*\overline{6}) = \mu(\overline{3}*\overline{9})$ maka $\mu(\overline{6}) = \mu(\overline{9})$ (hukum pencoretan kiri)
- b. Jika $\mu(\overline{6}*\overline{3}) = \mu(\overline{9}*\overline{3})$ maka $\mu(\overline{6}) = \mu(\overline{9})$ (hukum pencoretan kanan)

Perhatikan bahwa

i. Jika $\mu(\overline{3}*6) = \mu(\overline{3}*\overline{9})$ maka $\mu(\overline{6}) = \mu(\overline{9})$. Jelas bahwa $\overline{3}*\overline{5}$, $\overline{3}*\overline{9} \in \mathbb{Z}_{11} - \{\overline{0}\}$ memiliki sifat tertutup dan $\overline{3}$ memiliki invers $\overline{4}$ maka

$$\mu(\overline{4} * (\overline{3} * \overline{6}) = \mu(\overline{4} * (\overline{3} * \overline{9}))$$

$$\Rightarrow \mu((\overline{4} * \overline{3}) * \overline{6}) = \mu((\overline{4} * \overline{3}) * \overline{9})$$

$$\Rightarrow \mu(\overline{1} * \overline{6}) = \mu(\overline{1} * \overline{9})$$

$$\Rightarrow \mu(\overline{6}) = \mu(\overline{9})$$

$$\Rightarrow \left(\frac{1}{20}\right) \neq \left(\frac{1}{10}\right)$$

Jadi diperoleh $\mu(\overline{6}) \neq \mu(9)$ atau tidak memenuhi hukum pencoretan kiri

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

ii. Jika $\mu(\overline{6}*\overline{3}) = \mu(\overline{9}*\overline{3})$ maka $\mu(\overline{6}) = \mu(\overline{9})$ Jelas bahwa $\overline{6}*\overline{3}$, $\overline{9}*\overline{3} \in \mathbb{Z}_{11} - \{\overline{0}\}$ memiliki sifat tertutup dan $\overline{3}$ memiliki invers $\overline{4}$ maka

$$\mu(\overline{6} * \overline{3})) * \overline{4}) = \mu((\overline{9} * \overline{3}) * \overline{4})$$

$$\Rightarrow \mu(\overline{6} * ((\overline{3} * \overline{4}) = \mu(\overline{9} * ((\overline{3} * \overline{4}) = \mu(\overline{6} * \overline{1}) = \mu(\overline{9} * \overline{1}))$$

$$\Rightarrow \mu(\overline{6} * \overline{1}) = \mu(\overline{9} * \overline{1})$$

$$\Rightarrow \mu(\overline{6}) = \mu(\overline{9})$$

$$\Rightarrow \left(\frac{1}{20}\right) \neq \left(\frac{1}{10}\right)$$

Jadi diperoleh $\mu(\overline{6}) \neq \mu(\overline{9})$ atau tidak memenuhi hukum pencoretan kanan.

Dari hasil yang diperoleh dalam membuktikan teorema 2.8.2 menggunakan kasus khusus $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$ terbukti bahwa teorema 2.8.2 ini tidak berlaku secara umum, karena tidak semua subgrup fuzzy bilangan bulat modulo prima memenuhi hukum pencoretan grup fuzzy.

Selanjutnya pembuktian Teorema 2.8.3 akan dibuktikan berdasarkan kasus khusus pada grup $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$. Berikut adalah pembuktiannya:

- a. Pembuktian Teorema 2.8.3 pada $\mu: \mathbb{Z}_5 \{\overline{\mathbf{0}}\} \to [\mathbf{0}, \mathbf{1}]$
 - 1. Misalkan $\mathbb{Z}_5 \{\overline{0}\}$ grup dan μ grup fuzzy di $\mathbb{Z}_5 \{\overline{0}\}$ didefinisikan $\mu: \mathbb{Z}_5 \{\overline{0}\} \to [0,1]$ dengan $\mu(x) = \frac{1}{2 \ ord(x)}$. Selanjutnya dimisalkan 1' identitas dari μ dan 1 unsur identitas di $\mathbb{Z}_5 \{\overline{0}\}$. Akan ditunjukkan 1' = 1. Ambil $2 \in \mu$, karena μ grup fuzzy dari $\mathbb{Z}_5 \{\overline{0}\}$ maka $2 \in \mathbb{Z}_5 \{\overline{0}\}$. Perhatikan bahwa jika $2 \in \mathbb{Z}_5 \{\overline{0}\}$ dan 1 identitas $\mathbb{Z}_5 \{\overline{0}\}$ maka 2 * 1 = 2

Jika $2 \in \mu$ dan \dot{e} identitas dari μ maka

$$2 * 1' = 2$$

Dengan demikian

$$2 * 1 = 2 * 1'$$

$$\Leftrightarrow 1 = 1'$$

2. Misalkan 1 unsur identitas di μ : $\mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$. Berdasarkan (1) maka 1 juga unsur identitas di $\mathbb{Z}_5 - \{\overline{0}\}$. Ambil sebarang $3 \in \mu$, karena μ subgrup fuzzy dari $\mathbb{Z}_5 - \{\overline{0}\}$ maka $3 \in \mathbb{Z}_5 - \{\overline{0}\}$. Misalkan 2' invers dari $3 \in \mu$ dan 2 invers dari $3 \in \mathbb{Z}_5 - \{\overline{0}\}$. Perhatikan bahwa

Jika 2' invers dari $3 \in \mu$ maka 3 * 2' = 1

Jika 2 invers dari $3 \in \mathbb{Z}_5 - \{\overline{0}\}$ maka 3*2=1. Dengan demikian $3*2'=3*2 \Leftrightarrow 2'=2$. Jadi 2'=2

- b. Pembuktian Teorema 2.8.3 pada μ : $\mathbb{Z}_{11} {\overline{0}} \rightarrow [0, 1]$
 - 1. Misalkan $\mathbb{Z}_{11} \{\overline{0}\}$ grup dan μ grup fuzzy di $\mathbb{Z}_{11} \{\overline{0}\}$ didefinisikan $\mu: \mathbb{Z}_{11} \{\overline{0}\} \rightarrow [0,1]$ dengan $\mu(x) = \frac{1}{2 \ ord(x)}$. Selanjutnya dimisalkan 1' identitas dari μ dan 1 unsur identitas di $\mathbb{Z}_{11} \{\overline{0}\}$ dapat dilihat pada Tabel 4.6. Akan ditunjukkan 1' = 1. Ambil

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

 $7 \in \mu$, karena μ grup fuzzy dari $\mathbb{Z}_{11} - \{\overline{0}\}$ maka $7 \in \mathbb{Z}_{11} - \{\overline{0}\}$. Perhatikan bahwa jika $7 \in \mathbb{Z}_{11} - \{\overline{0}\}$ dan 1 identitas $\mathbb{Z}_{11} - \{\overline{0}\}$ maka 7 * 1 = 7

Jika $7 \in \mu$ dan 1' identitas dari μ maka

$$7 * 1' = 7$$

Dengan demikian

$$7 * 1 = 7 * 1'$$

2. Misalkan 1 unsur identitas di μ : $\mathbb{Z}_{11} - \{\overline{0}\} \rightarrow [0,1]$. Berdasarkan (1) maka 1 juga unsur identitas di $\mathbb{Z}_{11} - \{\overline{0}\}$. Ambil sebarang $7 \in \mu$, karena μ subgrup fuzzy dari $\mathbb{Z}_{11} - \{\overline{0}\}$ maka $7 \in \mathbb{Z}_{11} - \{\overline{0}\}$. Misalkan 8' invers dari $7 \in \mu$ dan 8 invers dari $7 \in \mathbb{Z}_{11} - \{\overline{0}\}$. Perhatikan bahwa

Jika 8' invers dari $7 \in \mu$ maka 7 * 8' = 1

Jika 8 invers dari $7 \in \mathbb{Z}_{11} - {\bar{0}}$ maka 7 * 8 = 1. Dengan demikian $7 * 8' = 7 * 8 \Leftrightarrow$ 8' = 8. Jadi 8' = 8

Pembuktian Teorema 2.8.4 akan dibuktikan berdasarkan kasus khusus pada grup $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$. Berikut adalah pembuktiannya:

a. Pembuktian Teorema 2.8.4 pada μ : $\mathbb{Z}_5 - \{\overline{\mathbf{0}}\} \rightarrow [\mathbf{0}, \mathbf{1}]$

Misalkan $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ adalah suatu grup fuzzy dalam grup $\mathbb{Z}_5 - \{\overline{0}\}$. Misalkan 1 dan 1' unsur identitas dari μ , karena μ subgrup fuzzy di $\mathbb{Z}_5 - \{\overline{0}\}$ maka 1,1' $\in \mathbb{Z}_5 - \{\overline{0}\}$.

Perhatikan bahwa

Karena 1' unsur identitas di $\mathbb{Z}_5 - {\bar{0}}$ dan $1 \in \mathbb{Z}_5 - {\bar{0}}$, maka

$$1' * 1 = 1' * 1 = 1' \tag{4.1}$$

Karena 1 unsur identitas di $\mathbb{Z}_5-\{\bar{0}\}$ dan $\mathbf{1}'\in\mathbb{Z}_5-\{\bar{0}\},$ maka

$$1 * 1' = 1 * 1' = 1 \tag{4.2}$$

Berdasarkan (4.1) dan (4.2) diperoleh 1 = 1'

b. Pembuktian Teorema 2.8.4 pada μ : $\mathbb{Z}_{11} - \{\overline{\mathbf{0}}\} \rightarrow [\mathbf{0}, \mathbf{1}]$

Misalkan : $\mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$ adalah suatu grup fuzzy dalam grup $\mathbb{Z}_{11} - \{\overline{0}\}$. Misalkan 1 dan 1' unsur identitas dari μ , karena μ subgrup fuzzy di $\mathbb{Z}_{11} - \{\overline{0}\}$ maka $1,1' \in \mathbb{Z}_{11} - \{\overline{0}\}$ dapat dilihat pada Tabel 4.6.

Perhatikan bahwa

Karena 1' unsur identitas di $\mathbb{Z}_{11} - {\bar{0}}$ dan $1 \in \mathbb{Z}_{11} - {\bar{0}}$, maka

$$1' * 1 = 1' * 1 = 1' \tag{4.3}$$

Karena 1 unsur identitas di $\mathbb{Z}_{11}-\{\overline{0}\}$ dan $1'\in\mathbb{Z}_{11}-\{\overline{0}\}$, maka

$$1 * 1' = 1 * 1' = 1 \tag{4.4}$$

Berdasarkan (4.3) dan (4.4) diperoleh 1 = 1'

Selanjutnya pembuktian Teorema 2.8.5 akan dibuktikan berdasarkan kasus khusus pada grup $\mu: \mathbb{Z}_5 - \{\overline{0}\} \to [0,1]$ dan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$. Berikut adalah pembuktiannya:

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

a. Pembuktian Teorema 2.8.5 pada μ : $\mathbb{Z}_5 - \{\overline{\mathbf{0}}\} \rightarrow [\mathbf{0}, \mathbf{1}]$

Misalkan μ : $\mathbb{Z}_5 - {\overline{0}} \to [0,1]$ adalah suatu subgrup fuzzy dalam grup $\mathbb{Z}_5 - {\overline{0}}$. Ambil sebarang $2 \in \mu$. Misalkan 3, 3' invers dari 2. Karena μ suatu subgrup fuzzy dalam grup $\mathbb{Z}_5 - {\overline{0}}$ maka 2,3,3' $\in \mathbb{Z}_5 - {\overline{0}}$. Akan ditunjukkan 3 = 3'. Perhatikan bahwa

Karena 3 invers dari 2, maka
$$3 * 2 = 2 * 3 = 1$$
 (4.5)

Karena 3' invers dari 2, maka
$$3' * 2 = 2 * 3' = 1$$
 (4.6)

Dari (4.5) dan (4.6) diperoleh 3 * (2 * 3') = 3 * 1 = 3

$$Jadi \ 3 * (2 * 3') = 3 \tag{4.7}$$

Dari (4.7) diperoleh
$$(3 * 2) * 3' = 1 * 3' = 3$$

$$Jadi (3*2)*3' = 3'$$
(4.8)

Karena grup memenuhi sifat asosiatif, maka dari (4.7) dan (4.8) diperoleh 3 = 3 * (2 * 3') = (3 * 2) * 3' = 3'. Jadi diperoleh 3 = 3' dengan kata lain invers dari setiap elemen μ tunggal.

b. Pembuktian Teorema 2.8.5 pada μ : $\mathbb{Z}_{11} - {\overline{0}} \rightarrow [0, 1]$

Misalkan $\mu: \mathbb{Z}_{11} - \{\overline{0}\} \to [0,1]$ adalah suatu grup fuzzy dalam grup $\mathbb{Z}_{11} - \{\overline{0}\}$. Ambil sebarang $9 \in \mu$. Misalkan 5,5' invers dari 9. Karena μ suatu subgrup fuzzy dalam grup $\mathbb{Z}_{11} - \{\overline{0}\}$ maka 9,5,5' $\in \mathbb{Z}_{11} - \{\overline{0}\}$. Akan ditunjukkan 5 = 5'. Perhatikan bahwa

Karena 5 invers dari 9, maka
$$5 * 9 = 9 * 5 = 1$$
 (4.9)

Karena 5' invers dari 9, maka
$$5' * 9 = 9 * 5' = 1$$
 (4.10)

Dari (4.9) dan (4.10) diperoleh 5 * (9 * 5') = 5 * 1 = 5

$$Jadi 5 * (9 * 5') = 5 (4.11)$$

Dari (4.11) diperoleh (5 * 9) * 5' = 1 * 5' = 5'

$$Jadi (5*9)*5' = 5'$$
(4.12)

Karena grup memenuhi sifat asosiatif, maka dari (4.11) dan (4.12) diperoleh 5 = 5 * (9 * 5') = (5 * 9) * 5' = 5'. Jadi diperoleh 5 = 5' dengan kata lain invers dari setiap elemen μ tunggal.

5. KESIMPULAN DAN SARAN

Berdasarkan hasil dan pembahasan maka dapat disimpulkan bahwa subhimpunan $\mathbb{Z}_P - \{\overline{0}\}$ dengan bilangan bulat modulo prima 5 dan 11 merupakan grup klasik dengan operasi perkalian grup.

Subhimpunan fuzzy dalam grup $\mathbb{Z}_P - \{\overline{0}\}$ merupakan subgrup fuzzy dan secara umum sifat pada grup klasik berlaku pada subgrup fuzzy yaitu ketunggalan identitas dan ketunggalan invers. Namun terdapat sifat pada grup klasik yang tidak berlaku pada subgrup fuzzy yaitu hukum pencoretan.

Berdasarkan penelitian yang telah dilakukan, terdapat saran yang dapat diberikan kepada pembaca atau peneliti berikutnya yaitu menunjukkan grup $\mathbb{Z}_P - \{\overline{0}\}$ merupakan grup fuzzy dengan p adalah sebarang bilangan bulat modulo prima.

Imelda Bo'bo' Batunna, Harina O.L Monim, Junianto Sesa

Daftar Pustaka

- [1]. Abdy, M., Sukarna, S dan Abubakar, R., 2019. Suatu Kajian Tentang Grup Fuzzy. *Journal of Mathematics, Computations, and Statistics*, 1(1):78.
- [2]. Bejines, C., Chasco, M. J. and Elorza, J., 2021. Aggregation of fuzzy subgroups. *Fuzzy Sets and Systems*, 418:170–184.
- [3]. Dogra, S. and Pal, M., 2023 Picture Fuzzy Subgroup, *Kragujevac Journal of Mathematics*, 47(6), pp. 911–933.
- [4]. Fatkhur, R., Wardayani, A dan Suroto, 2014. Subgrup Fuzzy Atas Suatu Grup. *Applied Microbiology and Biotechnology*, 6(1):33–44.
- [5]. Herstein, I. N., 1964. *Topics in Algebra*. Edisi Kedua. Penerbit John Wiley & Sons. New York.
- [6]. Hungerford, T. W., 1973. Algebra. Penerbit Springer. Washington
- [7]. Jaradat, A. and Al-Husban, A. 2021. The multi-fuzzy group spaces on multi-fuzzy space. *Journal of Mathematical and Computational Science*, 11(6):7535–7552.
- [8]. Malik, D. S., Mordeson, J. N. and Sen, M. K., 2007. *Introduction to Abstract Algebra*. Penerbit The McGraw-Hill Companies, Inc. California
- [9]. Mordeson, J. N., Bhutani, K. R. and Rosenfeld, A., 2005. *Fuzzy Group Theory*. Penerbit Springer. USA
- [10]. Suryanti, S., 2017. Teori Grup. Penerbit UMG Press. Gresik
- [11]. Yasir, A., Abdurrahman, S dan Huda, N., 2016. Anti subgrup. *Jurnal Matematika Murni dan Terapan*, 10(2).