
 

Vol. 21, No. 1, September 2024, pp. 334-344 

DOI: 10.20956/j.v21i1.36351 
 

 

 

  

 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License 
 

 

The Comparison of Inverse Gaussian and Gamma 

Regression: Application on Stunting Data in Jepara 
 

 

Eva Khoirun Nisa1*, Riska Maulina2 

 
1,2UIN Walisongo Semarang 

Email:1*evakn@walisongo.ac.id, 2riskamaulina199@gmail.com 

 

 

Abstract 

Many research data have distributions other than the normal distribution, called exponential 

family distributions. The exponential family of distributions includes the inverse Gaussian and 

Gamma distributions. There are parallels between these two distributions in terms of the kind of 

random variable and how well they work. Finding the optimal model using inverse Gaussian and 

Gamma regression on stunting data in Jepara is the goal of this study. Maximum Likelihood 

Estimation is used for parameter estimation, Maximum Likelihood Ratio Test is used for 

simultaneous parameter testing, and Wald testing is used for partial parameter testing. For this 

case, the best model is inverse Gaussian regression. Exclusive breastfeeding, low birth weight 

babies, clean drinking water facilities, and the number of Integrated Service Post (Posyandu) 

influence the percentage of stunting in Jepara.. 

Keywords:   inverse Gaussian regression, Gamma regression, Maximum Likelihood 

Estimation, Maximum Likelihood Ratio Test 

 

1.  INTRODUCTION  

Instead of being dispersed normally, the majority of study data in the field follows is 

exponential family [13]. In statistics, there are quite a lot of distributions that fall into the 

exponential family. Bernoulli, Binomial, Negative Binomial, Poisson, Normal, Exponential, 

Gamma, Inverse Gaussian, and Weibull distributions are members of the exponential family.  

 Inverse Gaussian and Gamma distribution are two members of the exponential family. The 

two distributions are similar but the Inverse Gaussian plot is more slanted and the plot is sharper 

[10] so usually data that follows the Gamma distribution can also follow the inverse Gaussian. 

There are many similarities to the Inverse Gaussian and Gamma distributions, using non-negative 

continuous random variables at intervals, being an Exponential family, having two parameters (for 

Gamma two parameters), and a linear model can be formed using the Generalized Linear Model 

http://creativecommons.org/licenses/by-nc/4.0/
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(GLM) [17]. With GLM, a link function is used to connect the expectations of the response variable 

with the explanatory variables in the linear model [11]. The choice of link function type depends 

on the ease of estimating model parameters. When Inverse Gaussian and Gamma are formed in the 

regression model, the types of link functions in this research are log and canonical functions. Log 

function for Inverse Gaussian regression and canonical for Gamma regression. The two link 

functions were chosen because these functions are often used in research [6]. The two distributions 

are similar but research using and comparing the two is limited. Through this research, inverse 

Gaussian and Gamma regression will be modeled and compared to the stunting data. 

In 2020, Jayalath and Chhikara [7] conducted a survival analysis using an inverse Gaussian 

distribution, which helped them develop a Gibbs sampling technique. Compared to Inverse 

Gaussian, there are more techniques used in survival for the Gamma distribution. Kiche et al. [9] 

renamed the Gamma distribution as the Generalized Gamma (GG) distribution. The application of 

GG to survival data is correct, except that GG uses three parameters. Likewise Cox et al. [5] also 

examined GG in survival analysis. We can see that the majority of Inverse Gaussian and Gamma 

applications are in the field of survival, such as a patient's survival against certain diseases, so this 

research is relevant to apply to stunting cases. 

Stunting is a condition of a toddler experiences a lack of nutritional intake for a long period of 

time so that the child experiences growth disorders, a height shorter than the age standard [8] The 

human growth can occur in an existing fetus in the womb and only becomes visible when the child 

is two years old [14]. Data on the percentage of stunting in Jepara Regency from 2019-2022 there 

has been an increase. According to the Indonesian Nutrition Status Survey (SSGI), the prevalence 

of stunting in Jepara 18.2% in 2022, decreased significantly compared to the previous year by 25% 

and the number of stunted babies in Jepara continues to decline from year to year. Therefore, an 

analysis is needed to determine the factors causing stunting in Jepara in order to they can be 

addressed appropriately. One model to find factors causing stunting in Jepara is inverse Gaussian 

and Gamma regression. 

 

2.  LITERATURE REVIEW 
 

2.1   Inverse Gaussian Distribution 

 

       The Inverse Gaussian distribution, also known as the Wald distribution, is a family of two-

parameter exponentials with non-negative continuous random variables on the interval. The Inverse 

Gaussian distribution was first studied by Schrowdinger and Smoluchowski in relation to Brownian 

motion [15]. The name Inverse Gaussian was given by Tweedie in 1956. Suppose Y a continuous 

random variable is said to have an Inverse Gaussian distribution with location parameters   and 

scale parameters   if it satisfies the probability density function: 
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2.2   Gamma Distribution 

 

 The Gamma distribution is often used in probability models for waiting times. Like the Inverse 

Gaussian distribution, the random variable in the Gamma distribution is also positively continuous. 

The continuous random variable Y has a Gamma distribution with two parameters α and β, which 

have a probability density function 

 

𝑓(𝑦) = {
1

𝛽𝛼𝛤(𝛼)
𝑦𝛼−1𝑒

−
𝑦

𝛽⁄
         ,   𝑦 > 0  

0                                   , 𝑦 𝑜𝑡ℎ𝑒𝑟𝑠
  

0, 0    

 

The link function commonly used in Gamma regression is the canonical link [12]. The method for 

determining parameter estimates and parameter testing is the same as in Inverse Gaussian 

regression. 

 

2.3   Generalized Linear Model 

 

Not all cases that occur in the field contain normally distributed responses. Some of the 

responses that occur have more general distributions such as Gamma and Inverse Gaussian. To 

handle conditions where the responses are not normally distributed but are still independent of each 

other, statisticians pioneered by Nelder and Wedderburn in 1972 have developed a linear model 

known as the Generalized Linear Model (GLM) or generalized linear model. This linear model uses 

the assumption that the response has an exponential family distribution [17]. 

According to McCullagh and Nelder (1989) [11], we assume that each component  of Y has 

an exponential family distribution, so the form of the probability density function is as follows: 

 
 
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y b
f y c y
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where  is a canonical parameter,  dispersion parameter, and      , , ,a b c y   are a known 

function. There are three important components in the generalized linear model. They are 

1. The random components of Y are independently distributed in the exponential family 

2. The systematic component is a linear predictor  written with an equation 

(1) 

(2) 

(3) 
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3. The link function  .g that connects the random component in this case is the mean with the 

systematic component is called the linear predictor. 

 

 

2.4   Goodness of fit test 

 
   Many hypothesis testing for goodness of fit likes Anderson Darling and Variance Ratio. 

Villasenor and Gonzales-Estrada [18] stated that the variance ratio test is more powerful than the 

Anderson Darling test. Furthermore, Variance Ratio is used in this study. Hypothesis is given below 

0

1

: the data fits the hypothesized distribution

: the data does not fit the hypothesized distribution

H

H
 

The formula of Variance ratio is given as follows 
2

1

2

2

S
F

S
          

H0 is rejected when 
,n kF F   with n  the number of samples and k  the number of parameters. 

  

2.5    Multicollinearity 

Multicollinearity is an assumption that requires predictor variables to be independent of each 

other.  It can be indicated by a VIF value of less than 10 [4], [16]. VIF formula is given below 

 
2

1

1
j

j

VIF
R




 

with 
2

jR being the coefficient of determination of variable-j.  

 

2.6    Maximum Likelihood Estimation 

 

Maximum Likelihood Estimation (MLE) is parameter estimation that yields unbiased 

parameters [3]. Wang et al. [19] employ MLE with maximum ranked set sampling for inverse 

Gaussian statistical inference. The uneven samples are used in the sampling operation to reduce 

errors and increase efficiency. Estimation starts from forming a likelihood function from the 

probability density function. The likelihood function is defined as follows [3] 

     1 , ...... , .nL f x f x    

hen determining the ln likelihood function. The next stage is determining the ln likelihood function 

and finding derivative of each parameter. if the result is not closed form then continued with 

numerical iteration.  

 

(5) 

    (6) 

    (7) 

(4) 
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2.7   Parameter Testing 

  Parameter testing was carried out twice, they are simultaneous and partial parameter testing. 

Simultaneous parameter testing using Maximum Likelihood Ratio Test (MLRT) with the following 

hypothesis 

Hypothesis: 

0

1

: all parameters are significant simultaneously

: at least one parameter is not significant simultaneously

H

H
 

Test statistics of MLRT is given 
2 2lnG     with  
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 Wilks [20] represent 2ln   is a likelihood ratio for n the number of parameters under H1 

and H0 approaches infinity, which asymptotically yields a Chi-square distribution with degrees of 

freedom. Reject H0 if 
2 2

hitung ,kG  .  

2.8   Model Selection Criteria 

  Among the factors used to determine which model is best is the application of Akaike's 

Information Criterion (AIC). The Maximum Likelihood Estimation (MLE) method serves as the 

foundation for this approach and produces unbiased parameter [2]. One benefit of using AIC is that 

it already has a large number of predictor variables, which is very helpful for choosing the optimum 

regression model. The AIC formula, according to [1] looks like this: 

AIC = -2 ln L(.) + 2k    

with   L(.)     : likelihood function 

 k      : number of parameters 

 

The best model is the model with the smallest AIC value. 

 

3. METHODS 

    This study uses inferential analysis, specially inverse Gaussian and Gamma regression. The two 

models are applied on stunting data in Jepara as response variable and exclusive breastfeeding, low 

birth weight babies, clean drinking water facilities, the number of posyandu as predictor variables. 

The data used is secondary data from the Central Statistics Agency in 2022. The following are the 

analysis stages in this research 

    (9) 

    (8) 
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1) Parameter estimation of inverse Gaussian and Gamma regression 

2) Inverse Gaussian and gamma regression modeling on stunting data in Jepara 

3) Simultaneous and partial parameter testing 

4) Interpretation of result 

5) Determining the best model based on AIC criteria 

 

4. RESULTS  

4.1  Estimation of Inverse Gaussian and Gamma Parameters 

 In this study, Maximum Likelihood Estimation was used to estimate parameters for Inverse 

Gaussian and Gamma regression. Firstly, we estimate parameters of Inverse Gaussian regression 

with determine probability density function. Suppose n sample random 1 2, ,..., ny y y so that we 

obtain probability density function of inverse Gaussian 
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Secondly, we determine likelihood function from (2) as the first step of Maximum Likelihood 

Estimation. 
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Thirdly, we determine the ln-likelihood function from (12). 
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The estimator can be obtained by determining the first derivative of the ln-likelihood function for 

each parameter. The first partial derivative of 
T
β as follows: 
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In addition, the first partial derivative of  is 
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The results of partial derivative  dan β still contain other parameters so it is necessary to continue 

the numerical calculation with Fisher scoring iteration. Fisher Scoring was chosen because its 

convergence is guaranteed [13],[15],[21]. The followings are Fisher Scoring logarithm. 

1.    Determine an initial value 0γ  with 
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3.   Discover the Fisher information matrix      m mI E  H H  
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5. If 1m m      iteration stops and when 1m m      so return step 2 with 1m m   

Furthermore, the Gamma regression parameter estimation is carried out using MLE as follows  
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From the partial derivative of parameter   is obtained as follows 
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Meanwhile, the partial derivative of parameter β  is 
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As with inverse Gaussian regression, estimating Gamma parameters is also followed by Fisher 

scoring with the same algorithm. The difference is the Fisher information matrix  
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4.2 Inverse Gaussian and gamma regression modeling on the percentage of stunting in 

Jepara 

 To determine the performance of inverse Gaussian and Gamma regression in a case, they 

will be applied to stunting data to obtain the causal factors. A distribution fit test is performed 

to make sure the stunting data has an inverted Gaussian and gamma distribution. The Variance 

Ratio test is used to test distributions. Alpha 0.05 was chosen because the majority of the data 

used came from social surveys which did not require high precision. The result of inverse 

Gaussian is a failed rejected null hypothesis because 
0.05;20;16F F (2,276 < 13,271). The same 

result occurs in the Gamma distribution test which results in the acceptance of null hypothesis 

because 
0.05;20;16F F  (8,13 < 13,271). Therefore, the data has an Inverse Gaussian and Gamma. 
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The next stage is to detect multicollinear. To fulfill the assumption of no multicollinearity, the 

predictor variables must be independent of each other.  

 The next steps are parameter estimation and testing. MLE is applied to parameter 

estimation of inverse Gaussian and Gamma. The result of parameter estimation is obtained form 

Table 2. There are two parameter testing, simultaneous and partial parameter testing. G2 of 

MLRT test statistics and Chi-square table for inverse Gaussian and Gamma regression can be 

seen from Table 1. 

 

Table 1. Test statistics of MLRT 

Parameter 

Regression 
G2 2

0,05;4  

inverse Gaussian 33,49 9,49 

Gamma 2,6 9,49 

 

Table 1 indicates that all inverse Gaussian regression parameters are significant while the 

Gamma regression parameters are not significant simultaneously. This is because in the inverse 

Gaussian regression parameters G2 > 
2

0,05;4  while G2 < 
2

0,05;4  in Gamma regression. Based on 

these results, Gamma regression cannot be used to model the percentage of stunting in Jepara 

2020. In addition, all Gamma regression parameters are not significant in the partial parameter 

test because |Z| < Z0.05 as shown in Table 2. 

 

Table 2.  Estimator and partial parameter test 

 Inverse Gaussian regression  Gamma regression  

𝜆 ̂  ̂  |Z| α ̂ ̂  |Z| Z0.05 

 5.524e-05   4.384   5.833e-05 0.519 1.96 

 -1.832e-03   -9.419    -2.108e-03 -1.276 1.96 

 1.906e-04   3.022      2.828e-04 0.518 1.96 

 8.021e-04   5.853    4.737e-04 0.394 1.96 

2.315e-03  2.871 4.301e-03  0.072 1.96 

 

Table 2 shows that in the inverse Gaussian regression model |Z| > Z0.05 so that all parameters are 

partially significant. In contrast to that |Z| < Z0.05 in the Gamma regression so they are not 

significant as explained in the simultaneous parameter test. Therefore, the best model to find 

factors that influence stunting in Jepara is inverse Gaussian regression. This result is 

strengthened by the Akaike Information Criterion (AIC) value. AIC is a criteria for selecting 

the best model based on the likelihood function. Inverse Gaussian regression has a smaller AIC 

than Gamma regression which can be seen in Table 3. 
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Table 3.  AIC 

Model AIC 

inverse Gaussian 124,58 

Gamma 129,42 

 

Based on Table 3, we can obtain AIC value of inverse Gaussian smaller than Gamma regression. 

Furthermore, it can be said that inverse Gaussian regression is the best model to determine the 

factors causing the percentage of stunting in Jepara. The best model on stunting percentage is 

  

  1 2 3 4
ˆ exp 0.1255 0.000055 0.0018 0.00019 0.0008i i i i ix x x x      ,                    (17) 

 1,2,...,i n  

 

 Based on the results of the best model, it can be stated that exclusive breastfeeding, low 

birth weight babies, clean drinking water facilities, the number of posyandu have an influence 

on the percentage of stunting in Jepara.  

 

5.   CONCLUSION 

Inverse Gaussian and gamma are two probability distributions that have the same s positive 

continuous random variables. However, when applied to stunting data in Jepara, it was found that 

the inverse Gaussian regression model was the best model. Exclusive breastfeeding, low birth 

weight babies, clean drinking water facilities, and the number of Integrated Service Post (posyandu) 

influence the percentage of stunting in Jepara by 84,3%. 
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